Category:LBSP

From Jcbl.jp
Jump to: navigation, search


Upper classes: LB LBS

Contents



Sphingomyelin

Sphingomyelin (SM) is a ceramide linked with phosphocholine, and is found in nerves of vertebrate, especially myelin sheath. The long-chain base of SM is mostly d18:1 and some d18:0, just like glycosphingolipid. Fatty acid components are length 16-24 and hydroxy fatty acids are not included.[1]

スフィンゴミエリン (SM) はセラミドにホスホコリンが結合した構造で、脊椎動物の神経系、特にミエリン鞘に多くあります。SMの長鎖塩基はスフィンゴ糖脂質と同様に d18:1 が多く、 d18:0 も含まれます。脂肪酸は鎖長 16-24 で構成され、ヒドロキシ酸は通常含まれません。

| OH = O
(C14-chain)OーPーOCH2CH2N+(CH3)3
(fatty acid) ー | NH | OH


Biosynthesis

Sphingomyelin synthase is classified into three groups (SMS1, SMS2, SMSr), and two of them synthesize SM at Golgi (SMS1) and plasma membrane (SMS2). In mammals, a protein called CERT transports ceramide from ER to Golgi to synthesize SM. For degradation of SM, many enzymes are known that function in acidic, neutral, or alkaline conditions.[2]

SM合成酵素には3種類あり (SMS1, SMS2, SMSr)、そのうちの2種がゴルジ体 (SMS1) と細胞膜 (SMS2) でSMを合成します。哺乳動物ではSM合成時にセラミドを小胞体からゴルジ体に運ぶタンパク質CERTが知られています。SM分解酵素 (SMase) は種類が多く、酸性、中性、アルカリ性で働く酵素があります。

Mammalian SM synthase family (SMS1 in golgi; SMS2 in plasma membrane)
Phosphatidylcholine + Ceramide → Sphingomyelin + 1,2-Diacylglycerol
SM degradation (Sphingomyelinase) SMase
Sphingomyelin → Ceramide + Phosphocholine

Bioactivity

SM involves in cellular absorption of transferrin, cancer, and arterial sclerosis. Niemann-Pick disease type A / B, an inborn metabolic disease, is caused by accumulation of SM through the shortage of acid sphingomyelinase.[3]

SMはトランスフェリンの細胞内吸収、がん、動脈硬化に関係します。先天性代謝異常症のニーマンピック病A型、B型は酸性SMaseの不足によりSMが蓄積する疾患です。

  1. Merrill, A.H. "Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics" Chem. Rev. 2011, 111, 6387–6422. PMID 21942574
  2. Gault CR, Obeid LM, Hannun YA. "An overview of sphingolipid metabolism: from synthesis to breakdown" Adv Exp Med Biol. 2010;688:1-23. PMID 20919643, Yamaji T, Hanada K. "Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins" Traffic 2015 16:101-22.PMID 25382749 Zhang Y, Cheng Y, Hansen GH, Niels-Christiansen LL, Koentgen F, Ohlsson L, Nilsson A, Duan RD. "Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzymeknockout mice" J Lipid Res. 2011 52:771-81 PMID 21177474
  3. Slotte JP. "Biological functions of sphingomyelins" Prog Lipid Res. 2013; 52:424-37.PMID 23684760, Horinouchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, Sandhoff K, Desnick RJ, Stewart CL, Schuchman EH. "Acid sphingomyelinase deficient mice: a model of types A and B Niemann−Pick disease" Nat Genet. 1995;10:288-93. PMID 7670466

CPE and CAEP

Ceramide phosphoethanolamine (CPE) is formed from a ceramide phosphate linked with ethanolamine. It is often found in insects, trace amount in many animals including bacteria, protozoa, and mammals, and absent in plants or fungi.[1]

Ceramide aminoethylphosphonate (CAEP) is similar to CPE but is formed by the C-P bonding. It is found in protozoa, cnidaria, mollusca, and echinodermata.[2]

セラミドホスホエタノールアミン(CPE)はセラミドにリン酸を介してエタノールアミンが結合したものです。昆虫に多く見出されますが、バクテリアから原生生物、哺乳動物まで多くの生物に微量ですが存在します。植物や菌類には見いだされていません。

セラミドアミノエチルホスホン酸(CAEP)はCPEと似た構造ですがC-P結合を持ち、原生生物、刺胞動物、軟体動物、棘皮動物などに存在します。

| OH = O
(C14-chain)OーPーOCH2CH2NH2
(fatty acid) ー | NH | OH

Biosynthesis

There exist three types of sphingomyelin synthase, two of which synthesize CPE. One is SM synthase 2 in cell- and golgi membranes and the other, SM synthase-like protein in the ER lumen (CPE synthase). [3]

スフィンゴミエリン (SM) 合成酵素には3タイプあり、そのうちの2種が CPE を合成します。一つはSM合成酵素SMS2で細胞膜やゴルジ体に存在し、他方は小胞体のスフィンゴミエリン1-関連酵素(SMSr/SAMD8)(CPE synthase)です。

SM synthase 2 family (SMS2)
phosphatidylethanolamine + ceramide → CPE + 1,2-diacylglycerol
CPE synthase (SMS1-related enzyme) SMSr/SAMD8
CDP-ethanolamine + ceramide → CPE + CMP
  1. Bhat HB, Ishitsuka R, Inaba T, Murate M, Abe M, Makino A, Kohyama-Koganeya A, Kurahashi A, Kishimoto T, Tahara M, Yamamo A, Nagamune K, Hirabayashi Y, Juni N, Umeda M, Fujimori F, Nishibori K, Yamaji A, Greimel P, Kobayashi T, Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates, FASEB J. 2015 29:3920-34.PMID 26060215 Hannich JT, Umebayashi K, Riezman H. Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol. 2011 3. pii: a004762.PMID 21454248
  2. Hori T, Itasaka O, Inoue H. Biochemistry of shellfish lipid. 3. Purification and elemental analysis of ceramide aminoethylphosphonate from Corbicula complex lipid mixtures. J Biochem. 1966 59:570-3. PMID 5962677
  3. Ternes P, Brouwers JF, van den Dikkenberg J, Holthuis JC. “Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolaminesynthase”J Lipid Res. 2009; 50:2270-7. PMID 19454763

GIPC

Glycosyl inositol phosphoceramides (GIPCs) were historically referred to as 'phytoglycolipids' (PGLs) for their abundance in plants and fungi.[1][2] Later found in bacteria, protista, and other animals (except chordata), PGLs are now called GIPCs. The structure is composed of ceramide with inositol phosphate (inositolphosphoceramide, IPC) and different sugars are attached.[3][4]

Classification

In LipidBank, we classify GIPC into four types:

  1. P2 series: Glucosamine next to inositol (Fungi and Protista)
  2. P3 series: Glucuronic acid next to inositol (Plant)
  3. P4 series: Mannose next to inositol (Fungi)
  4. P5 series: Others
  5. (P1 series is sphingomyelin and ceramide phosphoethanolamine.)

グリコシルイノシトールホスホセラミド (GIPC) は植物に多く含まれるため、以前はフィト糖脂質 (phytoglycolipid, PGL) と呼ばれました。その後、菌類や植物だけでなく、バクテリア、原生生物、動物界(脊索動物は除く)に存在することがわかり、現在はGIPCと呼ばれます。 セラミドにイノシトールリン酸が結合したイノシトールホスホセラミド(IPC)に、様々な糖がついて伸長します。

LipidBankではGIPCを4つに分類しています。

  1. イノシトールの次がグルコサミン (原生生物と菌類)
  2. イノシトールの次がグルクロン酸 (植物)
  3. イノシトールの次がマンノース (菌類)
  4. その他

| OH = O
(C14-chain)OーPーO-Inositol-(sugar chain)
(fatty acid) ー | NH | OH

Biosynthesis

Inositol phosphoceramide synthase (IPCS)[5]
Phosphatidylinositol + Ceramide → Inositol phosphoceramide + Diacylglycerol


  1. Carter HE, Celmer WD, Galanos DS, Gigg RH, Lands EM, Law JH, Mueller KL, Nakayama T, Tomizawa HH, Weber E. Biochemistry of the sphingolipides. X. Phytoglycolipide, a complex phytosphingosine-containing lipide from plant seeds. Journal of the American Oil Chemists Society 1958 35: 335–343 DOI 10.1007/BF02640547
  2. Carter HE, Kisic A. “Countercurrent distribution of inosol lipids of plant seeds” J Lipid Res. 1969; 10:356-62. PMID 4307829
  3. Buré C, Cacas JL, Mongrand S, Schmitter JM "Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry" Anal Bioanal Chem. 2014 406:995-1010. PMID 23887274
  4. Gronnier J, Germain V, Gouguet P, Cacas JL, Mongrand S. ”GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth”Plant Signal Behav. 2016 2;11(4):e1152438 PMID 27074617
  5. Zhong W, Murphy DJ, Georgopapadakou NH. “Inhibition of yeast inositol phosphorylceramide synthase by aureobasidin A measured by afluorometric assay” FEBS Lett. 1999; 17;463:241-4. PMID 10606729

This category currently contains no pages or media.

Personal tools