Back to HOME

Carotenoid

(total 281)
Download Data as Excel Download All Images
No Structure COMMON NAME NAME DATA No INFORMANT SYMBOL FORMULA MOL.WT(ave) Download BIOOGICAL ACTIVITY PHYSICAL AND CHEMICAL PROPERTIES SPECTRAL DATA CHROMATOGRAM DATA SOURCE CHEMICAL SYNTHESIS METABOLISM GENETIC INFORMATION NOTE REFERENCES
MELTING POINT BOILING POINT DENSITY REFRACTIVE INDEX OPTICAL ROTATION SOLUBILITY UV SPECTRA IR SPECTRA NMR SPECTRA MASS SPECTRA OTHER SPECTRA
1
b-Carotene/ b,b-Carotene
b,b-Carotene
VCA0001
Masayoshi Ito
BC
C40H56 536.873 Download ChemDraw structure file
Spinach D1-D2-cyt b559 complex contains 2 b-carotene, 6 chlorophyll a and 2 pheophytin a (Ref. 1137). Crystal structure of photosystem II from Thermosynechococcus vulcanus (cyanobacterium) contains 2 b-carotene and 36 chlorophyll a (Ref. 1289), and that from Thermosynechococcus elongatus contains 7 b-carotene and 36 chlorophyll a (Ref. 1290) and 9 b-carotene, 36 chlorophyll a and 2 pheophytin a (Ref. 1336). Crystal structure of photosystem I from Thermosynechococcus elongatus (cyanobacterium) contains 22 b-carotene and 96 chlorophyll a (Ref. 1288).
Purified cytochrome b6f complex from spinach contains 0.77 mol b-carotene and 0.97 mol chlorophyll a, Mastigocladau laminosus (cyanobacterium) 1.02 and 1.65, and Chlamydomonas reinhardtii (green alga) 0.55 and 1.37, respectively. (Ref. 1099)
Crystal structure of dimeric cytochrome b6f complex from M.laminosus (Ref. 1294) and C.reinhardtii (Ref. 1292) contain 2 mol b-carotene and 2 mol chlorophyll a.
Fucoxanthin-chlorophyll a/c-protein assembly (FCPA) with energy transfer activity from fucoxanthin to chlorophyll a and from chlorophyll c to chlorophyll a isolated from Dictyota dichotoma (brown alga); 10 fucoxanthin, 1 violaxanthin, no b-carotene, 3 chlorophyll c, 13 chlorophyll a and a 54 kDa protein to form a 4.8 S complex (Ref. 1115).

Pro-vitamin A(Ref. 0102/0216). Singlet oxygen-quenching activity (Ref. 0088/0230/0438/0441). Antioxidant activity (Ref. 0090/0091/0092/0093/0103/0214/0226/0437). Anti-tumor activity (Ref. 0099/0100/0101/0217/0229). Effects raising the incidence of lung cancer in smokers (Ref. 1006).
Both lycopene and b-carotene showed no inhibitory effect on the development of rat urinary bladder carcinomas, while combination of carotenoids with NSAID decreased numbers and incidences of cancers (Ref. 1211). Palm carotene and b-carotene inhibited pancreatic carcinogenesis in hamsters, but a-carotene showed no effects (Ref. 1212).
A cellular carotenoid-binding protein of 67 kDa from ferret (mammalian) liver is purified and characterized with a high degree of specificity for binding only carotenoids with at least one unsubstituted b-end group (Ref. 1160).
180-182degC (Ref. 0023)
177-180degC (Ref. 0024)
lmax (nm): hexane 425, 450, 478
[Spectrum 0001] (Ref. 0060/0063); methanol 341, 429 (shoulder), 449, 475, %III/II=24.6
[Spectrum 1101] (Ref. 1052); acetonitrile/methanol/THF (58:35:7) 278, 353, 429 (shoulder), 453, 479, %III/II=26
[Spectrum 1001] (Ref. 1057); hexane, chloroform and CS2
[Spectrum 1052]
nmax(KBr)/cm-1: 1629 and 1599w (C=C) and 965s (CH)
[Spectrum 0002] (Ref. 0065)
1H-NMR d(270 MHz, CDCl3): 6.16 (7, 7'-H), 6.15 (8, 8'-H), 6.15 (10, 10'-H), 6.65 (11, 11'-H), 6.35 (12, 12'-H), ca. 6.25 (14, 14'-H), ca. 6.63 (15, 15'-H), 1.028 (1, 1'-gem-Me), 1.719 (5, 5'-Me), 1.972 (9, 9', 13, 13'-Me) (Ref. 0062/0066)
13C-NMR d(CDCl3): 34.3 (1, 1'), 39.7 (2, 2'), 19.3 (3, 3'), 33.2 (4, 4'), 129.3 (5, 5'), 138.0 (6, 6'), 126.7 (7, 7'), 137.8 (8, 8'), 136.0 (9, 9'), 130.8 (10, 10'), 125.0 (11, 11'), 137.3 (12, 12'), 136.4 (13, 13'), 132.4 (14, 14'), 130.0 (15, 15'), 29.0 (1, 1'-gem-Me), 21.7 (5, 5'-Me), 12.7 (9, 9'-Me), 12.7 (13, 13'-Me) (Ref. 0061).
m/z: 536 (M, 100%), 444 (M-92, 10%), 430 (M-106, 0.6%) (Ref. 0058/0060)
(70 eV) m/z (ion, intensity relative to base peak in %): 536 (M, 45), 444 (16), 430 (4), 219 (13),197 (12), 157 (26), 145 (34), 133 (32), 119 (72), 105 (62), 95 (51), 91 (45), 81 (48), 69 (100), 55 (60), 41 (48) (Ref. 0066)
FD-MS m/z: 536 (100%) (Ref. 1053)

RF-TLC on 0.25 mm RP-18 layers (Merck, Art. 15423) using several ratio of light petroleum (bp 40-60degC)-acetonitrile-methanol ex: 1:6:3 Rf=0.09, 3:1:6 Rf=0.20 (Ref. 0135)
HPLC (column: calcium hydroxide (Nakarai) 0.4times30 cm, eluent: acetone-hexane 99.9:0.1, flow: 0.5 ml/min) tR = ca. 28 min (all-E isomer)
[Chromatogram 0001] (Ref. 0062)
HPLC (column: Spherisorb A5Y (alumina) 0.28times25 cm, eluent: hexane with controlled water content) tR = ca. 32 min (all-E isomer)
[Chromatogram 0002] (Ref. 0066)
HPLC (column: Vydac 218TP54, acetonitrile-methanol-tetrahydrofuran 40:56:4, flow: 1 ml/min) tR = ca. 11 min (all-E isomer)
[Chromatogram 0003] (Ref. 0067)
HPLC (columun: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, follwed by 5 min-linear gradient MeOH-THF 7:3, and then MeOH-THF 7:3 for 5 min) b-carotene, echinenone, b-cryptoxanthin, 3-hydroxy-echinenone, cantaxanthin, 3'-hydroxy-echinenone, cis-adonixanthin, adonirubin, adonixanthin and astaxanthin were separated. tR = 14.98 min for b-carotene (Ref. 0208)
A reversed-phase HPLC procedure for quantitative measurement in serum of seven carotenoids (lutein, zeaxanthin, canthaxanthin, b-cryptoxanthin, lycopenes, a-c arotene and b-carotene) has been developed. (Ref. 0227)
Retinol, a-tocoherol, lutein, all-trans-lycopene, and a- and b-carotenes were determined in human plasma by reversed-phase HPLC. (Ref. 0228)
HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=19.5 min (Ref. 1057)
Bacteria, algae, higher plants (Ref. 0409) Animals (Ref. 0410)
Bangia fucopurupurea, Nemalion helminthoides, Bonnemaisonia hamifera, Gigartina stellata, Rhodymenia palmata, Ceramium rubrum, Polysiphonia brodiaei, Polysiphonia urceolata (Red algae) (Ref. 0058)
Anacystis nidulans (Cyanobacterium) (Ref. 1077)
Chloroflexus aurantiacus (Ref. 1105) and Chloroflexus aggregans (S. Takaichi) (Ref. 1106) (green filamentous bacteria)
The Wittig olefination of the C10-dialdehyde with 2 equivalents of the C15-phosphonium salt and of the retinlylphosphonium salt with retinal is described. b-Carotene is obtained in 80-85% yield after thermal isomerisation. (Ref. 0020)
Retinyl phosphonate was condensed with retinal to afford b-carotene in good yield. (Ref. 0021)
The di-Grignard reagent of acetylene was reacted with 2 equivalents of the C19-aldehyde to give the C40-acetylenic diol, from which b-carotene was obtained by dehydration, Lindlar hydrogenation, and isomerisation. (Ref. 0015/0020/0022)
The reductive coupling of retinal on treatment with low-valent titanium species, formed in situ TiCl3 and LiAlH4, provided b-carotene in high yield. (Ref. 0015/0023)
The reductive coupling of retinal to give b-carotene is also possible with TiCl4 and LiAlH4 in the presence of 1,8-bis(dimethylamino)naphthalene as a proton sponge. (Ref. 0015/0024)
2 Equivalents of the C15-sulphone was coupled with the C10-dialdehyde using BuLi as a base, acetylated in situ, and treated with aqueous NaOH to provide all-E-11,11'-bis[(p-chlorophenyl)-sulphonyl]-b,b-carotene in high yield. Subsequent elimination of the sulphonyl group then gave all-E-b-carotene. (Ref. 0014/0017/0026)
2 Equivalents of the C13-sulphone was reacted with the C14-acetylenic dichloride to give 15,15'-didehydro-b-carotene, which was transformed by a twofold isomerisation and partial reduction to b-carotene. (Ref. 0014/0017/0026)
Crystalline all-trans-b-carotene was obtained in 65% yield by simply refluxing a mixture of 2.6 equivalents of b-ionylideneethanol (C15-alcohol), phenyl isocyanate and tributylphosphine, 1 equivalent of the C10-dialdehyde, and 10 mol% of Pd(PPh3)4 in CH3CN for 5 h. (Ref. 0015/0025)
b-Carotene is synthesized from lycopene through two-step cyclization reactions by way of g-carotene by carotenogenic organisms such as higher plants (CrtL-b), algae, cyanobacteria (CrtL), and bacteria Erwinia species (CrtY) (Ref. 1002/1003/1004/1005).
[Table 1025]
b-Carotene is metabolized to retinal by b,b-carotene-15,15'-dioxygenase in animals. The gene encoding this enzyme has been cloned and functionally identified from chicken (Ref. 1044), Drosophila melanogaster (fly) (Ref. 1122), mouse (Ref. 1123/1233) and human (Ref. 1231).
b,b-Carotene-9',10'-dioxygenase is functionally identified from mouse, and its homolog is found from human and zebrafish (Ref. 1185).
b-Carotene is cleaved to crocetindial and b-cyclocitral by b-carotene 7,8(7',8') oxygenase of Microcystis (cyanobacterium) by freezing the cell pellet. The enzyme requires O2 and iron, but is sensitive to sulfhydryl reagents, antioxidants and chelation reagents, and is membrane bound (Ref. 1266).
Genes required for the biosynthesis of b-carotene from farnesyl diphosphate (FPP) were clarified in epiphytic bacteria Erwinia species for the first time in the beginning of the 1990's (Ref. 0201/1001). b-Carotene is synthesized from FPP by four crt gene products, CrtE, CrtB, CrtI, and CrtY (Ref. 1002).
[Table 0001] Nowadays, many corresponding genes are isolated from various organisms such as higher plants, cyanobacteria, fungi, and yeasts as well as bacteria, and the functions of the genes are elucidated (Ref. 0202/0233/1002/1003/1004/1005). Lycopene is the direct substrate for the synthesis of b-carotene by the way of g-carotene, catalyzed by lycopene cyclase (CrtY, LCY) (Ref. 0232/0234/1018).
Lycopene cyclases are divided into three types (Ref. 1258).
(1) CrtY and CrtL type: Higher plants (Lcy-b, CrtL-b), cyanobacteria (CrtL), purple bacteria, and bacteria including Erwinia and Paracoccus species (CrtY) (Ref. 1002/1003/1004/1005). They and also lycopene e-cyclase (CrtL-e, plants), lycopene b-monocyclase (CrtLm and CrtYm, bacteria) and capsanthin-caprorubin synthase (CCS, plants) have homology and five conserved regions (Ref. 1258). Erwinia CrtY has NADPH binding domain, but hydrogen atom introduced at C-2 comes from water not from NADPH (Ref. 1313).

(2) CrtYc and CrtYd type: They are divided into three groups, and they among threegroups have homology (Ref. 1310/1311). A heterodimer of two peptides (CrtYc and CrtYd) is found in Brevibacterium linens (Ref. 1124) and Mycobacterium aurum A+ (Ref. 1127) (Actinomycetales). A fusion-type of CrtYc and CrtYd is found in Halobacterim salinarum (CrtY) (Ref. 1310) and Sulfolobus solfataricus (Ref. 1311) (archaeon). A bifunctional enzyme involved lycopene cyclase activity (CrtY) located in N-terminus domain and phytoene synthase activity (CrtB) located in C-terminus domain is found Xanthophyllomyces dendrorhous (crtYB) (Ref. 1172), Mucor circinelloides (carRP) (Ref. 1173), Phycomyces blakesleeanus (carRA) (Ref. 1174), Neurospora crassa (al-2) (Ref. 1176), and Blakeslea trispora (CarRA) (Ref. 1312) (fungus). CrtY region is also a fusion of CrtYc and CrtYd.
(3) CruA type: Recently, a new type CruA is found in Chlorobium tepidum (green sulfur bacteria). From sequence homology, this is also found in some cyanobacteria.
Biotechnological achievement has recently been made for purposes of supplying b-carotene (provitamin A) to vitamin A-deficient children, by a Swiss and German group, i. e., transgenic rice plants 'Golden rice', which accumulate b-carotene in the endosperm, have been constructed by using the plant- and Erwinia-derived carotenogenic genes (Ref. 1017). Transgenic tomato plants, in which the b-carotene content has increased about threefold to 45% of the total carotenoid content, have also been constructed using the Erwinia crtI gene by an English, German, and Japanese group (Ref. 1066).
Gel filtration of carrot root chromoplasts yields one major carotenoprotein, in which one unit contains one a-carotene and two b-carotene in 54-kDa peptide (Ref. 1272).
Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337)
2
Astaxanthin/ (3S,3'S)-Astaxanthin
(3S,3'S)-3,3'-Dihydroxy-b,b-carotene-4,4'-dione
VCA0002
Masayoshi Ito
C40H52O4 596.838 Download ChemDraw structure file
Antioxidant activity (Ref. 0092/0093/0215). Singlet oxygen quenching activity (Ref. 0088/0230/0441). Immunomodulating action (Ref. 0213). Chemoprevention of carcinogenesis (Ref. 0218/0219).
Astaxanthin in cyst cells of Haematococcus pluvialis (green alga) functions as an antioxidant agent against oxidative stress (singlet oxygen, superoxide anion radical, hydrogen peroxide and peroxy radical) (Ref. 1140). Astaxanthin inhibited liver tumorigenesis in mouse (Ref. 1207).

a-Crustacyanin from Homarus gammarus (lobster) shell consists of five kinds of peptides; CRTC (A1, C1 and C2 peptides) and CRTA (A2 and A3 peptides) (Ref. 1273). b-Crustacyanin is a heterodimer of one CRTA and one CRTC, and two molecules of astaxanthin are located between two peptides. a-Crustacyanin is octamer of b-crustacyanin (totally 16 peptides and 16 astaxanthin), and has a molecular weight of about 320 kDa. Absorption maximum of astaxanthin in organic solvent is ca. 480 nm, that of b-crustacyanin is ca. 580 nm, and that of a-crustacyanin is ca. 630 nm. Keto group is essential to bind peptide and spectral shift (Ref. 1275/1276). 3D-Structure of b-crustacyanin (A1 and A2 dimer) is investigated (Ref. 1274).
216-218degC (Ref. 0010)
lmax (nm) (e): CHCl3 sim225 (sim15000), 251 (14500), sim285sh (sim14000), 298 (15000), 324 (14500), 488 (125000) (Ref. 0010/0077/0080); methanol
[Spectrum 1102]
nmax(KBr)/cm-1: 3486m (OH), 1664s (conj. CO), 1607m, 1557s (C=C), 1399w, 1390m, 1366w (gem. Dimetyl), 1076s, 1039m (OH) and 969s (CH=CH, trans)
[Spectrum 0003] (Ref. 0010/0077)
1H-NMR d(500 MHz, CDCl3): 1.21 and 1.32 (each 6H, s, 1, 1'-gem-Me), 1.81 (2H, t, J 13, 2, 2'-Hax), 1.94 (6H, s, 5, 5'-Me), 1.98 and 2.00 (each 6H, s, 9, 9', 13, 13'-Me), 2.16 (2H, dd, J 6 and 13, 2, 2'-Heq), 3.67 (2H, d, J 2, 3, 3'-OH), 4.32 (2H, ddd, J 2, 6 and13, 3, 3'-H) and 6.20-6.70 (14H, m, olefinic-H) (Ref. 0068/0077/0202)
m/z: 596 (M), (M-16), (M-16-16), (M-79), (M-92), (M-106), (M-92-16), (M-106-16), (M-154), (M-167), (M-207), (M-219), (M-233) (Ref. 0058/0059/0077)
CD data in CH2Cl2 solution: De 224 (+12.8), 249 (-14.4), 280 (+12.5), 323 (-23.1), 384 (+6.7), 521 (-3.2)
[Spectrum 0004] (Ref. 0064/0068/0078/0080)
CD data in EPA solution (25degC): De 240 (-20.0), 252 (0), 270 (+20.0), 284 (0), 314 (-34.0), 355 (0), 372 (+3.0) (Ref. 0421)
TLC (Kieselgel 60 Merck, CH2Cl2-acetone-formic acid 95:5:3) Rf = 0.3 (Ref. 0010)
HPLC (column: Sumipax OA-2000 (10mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 48:16:0.6, flow: 0.8 ml/min) tR = ca. 57 min (3R,3'R), ca. 60 min (meso), ca. 64 min (3S,3'S)
[Chromatogram 0004] (Ref. 0032/0069/0070/0210)
HPLC (column: LiChrosorb SI 60 (5 mm) 0.32times50 cm, eluent: hexane-ethyl acetate-acetonitrile 88:10:2, flow: 0.8 ml/min) tR = ca. 42 min (diacetate of all-E isomer)
[Chromatogram 0005] (Ref. 0071)
HPLC (columun: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, follwed by 5 min-linear gradient MeOH-THF 7:3, and then MeOH-THF 7:3 for 5 min) b-carotene, echinenone, b-cryptoxanthin, 3-hydroxy-echinenone, cantaxanthin, 3'-hydroxy-echinenone, cis-adonixanthin, adonirubin, adonixanthin and astaxanthin were separated. tR = 6.30 min for astaxanthin (Ref. 0208).
Separation of (3S,3'S), (3S,3'R) and (3R,3'R) astaxanthin by HPLC on a Pirkle covalent L-leucine column (Ref. 1164).
Homarus gammarus (lobster) (Ref. 0418)
Salmo salar, Oncorhynchus (salmon) (Ref. 0419)
Asterias rubens (starfish) (Ref. 0420)
Shrimps and lobsters (Ref. 0421)
Euphausia superba (antarctic krill) (Ref. 0422/0431/1256)
Asterina pectinifera, Asterias amurensis (tarfish) (Ref. 0423)
Watasenia scintilans, Sepia modokai, Sepia officinales (cuttlefish) (Ref. 0424)
Octopus vulgaris, Octopus ocellatus, Octopus minor (octopus) (Ref. 0424)
Adonis aestivalis (flower petals of higher plant) (Ref. 0433)
Haematococcus pluvialis (green alga) (Ref. 1007)
Agrobacterium aurantiacum, Alcaligenes sp. strain PC-1 (marine bacteria; present name Paracoccus sp. N81106 and MBIC03024, respectively) (Ref. 0068/0085) It has recently been shown that these marine bacteria belong to Paracoccus species according to their16S rDNA analysis, performed by T. Hamada of Marine Biotechnology Institute (DDBJ accession number: AB008114).
Paracoccus marcusii (gram-negative bacterium, a-3 subclass of the Proteobacteria) (Ref. 1012)
The Wittig condensation of C10-dialdehyde with 2 equiv. of C15-phosphonium salt and subsequent thermal isomerization afforded astaxanthin.
Racemic astaxanthin --- C15-phosphonium salt was prepared starting from 6-oxo-isophorone. (Ref. 0011)
(3S,3'S)-Astaxanthin --- C15-phosphonium salt was prepared starting from (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone. (Ref. 0010/0016)
(3S,3'S)- and (3R,3'R)-Astaxanthin --- Enantiomeric chiral blocks of C15-phosphonium salts were synthesized via three different routes. (Ref. 0012/0016)
(3S,3'S)- and (3R,3'R)-Astaxanthin --- C15-Phosphonium salts were prepared from enantiomeric 3-acetoxy-4-oxo-b-ionones obtained by separation of the corresponding diastereomeric camphanates and by microbial resolution. (Ref. 0015/0073)
(3S,3'S)-7,8-Didehydro- and 7,8,7',8'-tetradehydro-astaxanthins were synthesized starting from (4'S)-(2E)-5-(4'-hydroxy-2',6',6'-trimethyl-3'-oxo-1'-cyclohexenyl)-3-methyl-2-penten-4-ynal. (Ref. 0016/0143)
The Wittig reaction between 2 equiv. of the phenoxyacetylated (S)-C15-phosphonium bromide and C10-dialdehyde or C10-acetylenic dialdehyde gave (3S,3'S)-astaxanthin or (3S,3'S)-15,15'-didehydroastaxanthin. (3S,3'S)-15,15'-Didehydroastaxanthin was transformed into (3S,3'S)-astaxanthin by partial reduction and subsequent isomerization. (Ref. 0143)
Rainbow trout and salmon: astaxanthin a_right idoxanthin a_right adonixanthin a_right zeaxanthin a_right zeaxanthin 5,6-epoxides (Ref. 0406/0407) Marine fish egg (Prognichthys aggo, Seriola quinqueradiata):astaxanthin a_right idoxanthin a_right b,b-carotene-3,4,3'-triol a_right zeaxanthin a_right 3-hydroxy-b,e-caroten-3'-one a_right e,e-carotene-3,3'-dione a_right 3-hydroxy-e,e-caroten-3'-dione a_right tunaxanthin (Ref. 0408) Yellowtail (Seriola quinqueradiata): astaxanthin a_right b-carotene-triol a_right zeaxanthin a_right 3'-epilutein a_right tunaxanthin (Ref. 0430/0435)
astaxanthin a_right a_right 3-dehydroretinal a_right retinal (Ref. 0216) Red sea bream (Pagrus major): astaxanthin a_right b-carotene-triol a_right zeaxanthin a_right 3'-epilutein a_right tunaxanthin (Ref. 0432) astaxanthin a_right idoxanthin a_right 4-ketozeaxanthin (Ref. 0436) Tilapia (Tilapia nilotica): astaxanthin a_right zeaxanthin a_right 3,4-didehydroretinol (Ref. 0417/0216) Astaxanthin yield in various culture conditions of Haematococcus pluvialis (Chlorophyceae) (Ref. 1145) Astaxanthin and canthaxanthin are accumulated in lipoidal globules of Scenedesmus komarekii (Chlorophyceae, Chlorophyta) cultured under high light intensity and nitrogen limitaion (Ref. 1147).
Genes required for the biosynthesis of astaxanthin from b-carotene were isolated from the marine bacteria, Agrobacterium aurantiacum and Alcaligenes sp. strain PC-1 (present name: Paracoccus sp. N81106 and MBIC03024, respectively) (Ref. 0202/1008), and the functions of the genes were determined (Ref. 0202/0205/1009). b-Carotene is converted to astaxanthin by two dioxygenase enzymes CrtW (ketolase) and CrtZ (hydroxylase), which require O2, Fe2+, and 2-oxoglutarate (Ref. 1002).
[Table 0002] The corresponding genes were also isolated from the green alga Haematococcus pluvialis (Ref. 0203/1010/1011).
Almost the same stereochemical composition in astaxanthin, its monoester and its diester in krill are found: 62-71% (3R,3'R)-, 11-14% (3R,3'S; meso)- and 17-26% (3S,3'S)-astaxanthin (Ref. 0422). Those in Euphausia, Thysanoessa, Calanus, Acanthephyra and Cancer (Crustaceans) are also reported (Ref. 1257).
Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
3
Fucoxanthin
(3S,5R,6S,3'S,5'R,6'R)-5,6-Epoxy-3'-ethanoyloxy-3,5'-dihydroxy-6',7'-didehydro-5,6,7,8,5',6'-hexahydro-b,b-caroten-8-one
VCA0003
Masayoshi Ito
C42H58O6 658.906 Download ChemDraw structure file
Singlet oxygen quenching activity (Ref. 0230/0441). Anti-tumor acitivity (Ref. 0095/0096/0217/0235). Fucoxanthin inhibited tumor development in skin and duodenal carcinogenesis models of mouse (Ref. 1204). Fucoxanthin, lycopene and lutein decreased the number of aberrant crypt foci in colons in mice (Ref. 1206). Fucoxanthin showed anti-tumor promoting activity in mouse skin carcinogenesis (Ref. 1213).
Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPAR&gamma& ligand, troglitazone, on colon cancer cells (Ref. 1360). Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tisues (Ref. 1361).

Light-harvesting pigment (Ref. 0008/0009/0046/0220)
Fucoxanthin-chlorophyll a/c-protein assembly (FCPA) with energy transfer activity from fucoxanthin to chlorophyll a and from chlorophyll c to chlorophyll a is isolated from Dictyota dichotoma (brown alga); 10 fucoxanthin, 1 violaxanthin, no b-carotene, 3 chlorophyll c, 13 chlorophyll a and a 54 kDa protein to form a 4.8 S complex (Ref. 1115).
Fucoxanthin-chlorophyll proteins are purified from the centric diatom Cyclotella meneghiniana. They contain 18 and 19 kDa subunits, fucoxanthin, chlorophyll a and c, and have energy transfer activity (Ref. 1327).
164degC (evacuated tube) (Ref. 0027/0029)
lmax (nm): ethanol 266, 449, 467 sh; hexane 264, 426, 448, 477
[Spectrum 0005] (Ref. 0006); hexane 428 sh, 446, 475, %III/II=40; acetone 420 sh, 444, 467, %III/II=5; HPLC eluent 330, 427 sh, 445, 471, %III/II=6 (Ref. 0029); methanol
[Spectrum 1103]
nmax(KBr)/cm-1: 3440 (OH), 1929 (allene), 1734 (OAc), 1658 (conj. CO) and 1608 (C=C) (Ref. 0006)
nmax(KBr)/cm-1: 3483(OH), 3030-2856 (CH), 1930 (allene), 1732 (C=O acetate), 1654 (conj. CO), 1607, 1576, 1530, 1471, 1456 (CH2), 1385 and 1367 (gem-Me), 1335, 1261, 1245 (C-O acetate), 1201, 1175-1157, 1071, 1053, 1032, 958 (trans disubstituted C=C), 917 (Ref. 0029/0033)
1H-NMR d(500 MHz, CDCl3): 0.96 (3H, s, 1eq-Me), 1.04 (3H, s, 1ax-Me), 1.07 (3H, s, 1'eq-Me), 1.22 (3H, s, 5-Me), ca. 1.35 (2ax-H), 1.35 (3H, s, 5'-Me), 1.39 (3H, s, 1'ax-Me), 1.41 (1H, t, J 12, 2'ax-H), ca. 1.49 (2eq-H), 1.51 (1H, t, J 13, 4'ax-H), 1.79 (1H, dd, J 14, 9, 4ax-H), 1.82 (3H, s, 9'-Me), 1.95 (3H, s, 9-Me), 1.99 (6H, s, 13-, 13'-Me), ca. 2.00 (2'eq-H), 2.04 (3H, s, OAc), 2.29 (1H, ddd, J 13, 4, 2, 4'eq-H), 2.32 (1H, br dd, J 14, 4.5, 4eq-H), 2.60 and 3.66 (each 1H, d, J 18, 7-H2), 3.82 (1H, m, 3-H), 5.38 (1H, m, 3'-H), 6.06 (1H, s, 8'-H), 6.13 (1H, dd-like, J 11, 1, 10'-H), 6.27 (1H, br d, J 11.5, 14'-H), 6.35 (1H, d, J 15, 12'-H), 6.41 (1H, br d, J 11.5, 14-H), 6.57 (1H, dd, J 15, 11, 11-H), 6.60 (1H, dd, J 15, 11, 11'-H), 6.64 (1H, dd, J 14.5, 11.5, 15-H), 6.67 (1H, d, J 15, 12-H), 6.75 (1H, dd, J 14.5, 11.5, 15'-H) and 7.15 (1H, br d, J 11, 10-H)
[Spectrum 0006] (Ref. 0006/0028/0029)
13C-NMR d(100.6 MHz, CDCl3): 35.79, 35.17 (1, 1'), 47.11, 45.45 (2, 2'), 64.35, 68.01 (3, 3'), 41.69, 45.25 (4, 4'), 66.16, 72.71 (5, 5'), 67.09, 117.53 (6, 6'), 40.83, 202.37 (7, 7'), 197.87, 103.39 (8, 8'), 134.55, 132.51 (9, 9'), 139.11, 128.55 (10, 10'), 123.40, 125.70 (11, 11'), 145.04, 137.16 (12, 12'), 135.55, 138.09 (13, 13'), 136.55, 132.19 (14, 14'), 129.44, 132.51 (15, 15'), 25.06, 29.21 (16-ax, 16'-ax), 28.15, 32.10 (17-eq, 17'-eq), 21.18, 31.31 (18, 18'), 11.84, 14.03 (19, 19'), 12.78, 12.93 (20, 20') (Ref. 0028/0061)
(210degC, 70 eV) m/z (ion, intensity relative to base peak in %): 658 (M, 23), 640 (M-18, 37), 622 (M-18-18, 26), 580 (M-18-60, 21), 578 (M-80, 7), 562 (M-18-18-60, 13), 560 (M-18-80, 6), 488 (9), 484 (7), 482 (8), 237 (27), 221 (43), 212 (51), 197 (100)
[Spectra 0007 ] (Ref. 0029)
CD data in EPA solution:
[Spectrum 0008] (Ref. 0006/0028/0029)
Fluorescence properties (Ref. 1162)
TLC (silica plates, 0.5 mm, Kieselgel 60 Merck, hexane-acetone 7:3) Rf = 0.26 (Ref. 0029)
HPLC (column: Spherisorb S 5-W, eluent: hexane-isopropyl acetate-isopropyl alcohol-N-ethyl-diisopropylamine 83.9:14:2:0.1, flow: 1.5 ml/min) tR = ca. 35 min
[Chromatogram 0006] (Ref. 0002/0030)
HPLC (column: CHIRALCEL OD; DAICEL IND., LTD., 1.0times25 cm, eluent: EtOH-hexane 15:85, temp.: 37degC, flow: 2.2 ml/min) tR = 20 min
[Chromatogram 0007] (Ref. 0005/0006)
Brown algae (Fucus serratus) (Ref. 0027/0033)
Macroalgae (Pheophyceae) (Ref. 0033)
Marine Phytoplankton (Bacilliarophyceae, Dinophyceae, Prymnesiophyceae, Prasinophyceae, Chlorophyceae, Cryptophyceae, Rhodophyceae, Cyanophyceae) (Ref. 0033/0034)
Sea squirts (Halocynthia roretzi) (Ref. 0035/0401/0402/0411)
Shell fish (Tapes philippinarum) (Ref. 0403) (Mytilus edulis) (Ref. 0426)
Shell fish (Ref. 0411)
All-E (3S,5R,6S,3'S,5'R,6'R)-fucoxanthin is the only naturally occurring stereoisomer in brown algae (Ref. 1163).
Double Wittig condensations of the C10-dialdehyde with the 8-oxo-C15-phosphonium salt and the allenic C15-phosphonium salt provided the C40-skeletal compound, which was treated with MCPBA to afford fucoxanthin. These phosphonium salts were derived from the common intermediate, the C15-a-acetytlenic alcohol, which was synthesized via the coupling reaction of protected (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone with the protected (E)-3-methylpent-2-en-4-yn-1-ol. Key step was effective conversion of the C15-a-acetytlenic alcohol into the C15-8-oxo-compound using oxo-metallic catalyst and subsequent iodine-catalysed double-bond shift. (Ref. 0005/0006)
Sea squirt: Fucoxanthin a_right fucoxanthinol a_right halocynthiaxanthin a_right mytiloxanthin a_right mytiloxanthinone (Ref. 0401)
Fucoxanthin a_right fucoxanthinol a_right amarouciaxanthin A a_right amarouciaxanthin B (Ref. 0401)
Shell fish (Mytilus edulis): Fucoxanthin a_right fucoxanthinol a_right halocynthiaxanthin a_right mytiloxanthin (Ref. 0404)
In lying hens, fucoxanthin in Fucus serratus (brown algae) is metabolized to fucoxanthinol, and then fucoxanthinol 3'-sulphate and paracentrone (Ref. 1309).

The keto group at C-8 of fucoxanthin is single-bond trans-conformation for the conjugated double bond determined by NMR (Ref. 0028).
4
Halocynthiaxanthin
(3S,5R,6S,3'R)-5,6-Epoxy-3,3'-dihydroxy-7',8'-didehydro-5,6,7,8-tetrahydro-b,b-caroten-8-one
VCA0004
Masayoshi Ito
C40H54O4 598.854 Download ChemDraw structure file
Anti-neoplastic effect (anti-tumor promotion) (Ref. 0223). Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
Inhibotor of the reverse transcriptases of HIV type 1 and 2 (Ref. 0224).
Singlet oxygen quenching activity (Ref. 0230).
Suppressing efect of generation of superoxide and nitric oxide (Ref. 1097).
158-160degC (Ref. 0035)
lmax (nm): ethanol 279, 423sh, 453, and 475sh (Ref. 0006); hexane 277, 428sh, 452, 477sh
[Spectrum 0009] (Ref. 0006); ether 430, 452, and 470 (Ref. 0035)
nmax(KBr)/cm-1: 3420 (OH), 2190 (acetylene), 1660 (conj. CO), and 1610 (C=C) (Ref. 0006)
nmax(KBr)/cm-1: 3350 (OH), 2165 (acetylene), 1645 (conj. CO), and 960 (trans CH=CH) (Ref. 0035)
1H-NMR d(500 MHz, CDCl3): 0.97 (3H, s, 1eq-Me), 1.04 (3H, s, 1ax-Me), 1.15 (3H, s, 1'ax-Me), 1.20, 1.22 (each 3H, s, 1'eq-, 5-Me), 1.35 (1H, dd, J 12.5, 11, 2ax-H), 1.46 (1H, t, J 12.5, 2'ax-H), 1.52 (1H, m, 2eq-H), 1.79 (1H, dd, J 14, 9.5, 4ax-H), 1.84 (1H, ddd, J 12.5, 3.5, 2, 2'eq-H), 1.93 (3H, s, 5'-Me), 1.95 (3H, s, 9-Me), 1.98 (3H, s, 13'-Me), 2.00 (3H, s, 13-Me), 2.02 (3H, s, 9'-Me), 2.07 (1H, ddd-like, J 17.5, 9.5, 1.5, 4'ax-H), 2.32 (1H, br dd, J 14, 4.5, 4eq-H), 2.43 (1H, br dd, J 17.5, 5.5, 4'eq-H), 2.60, 3.65 (each 1H, d, J 18.5, 7-H2), 3.82 (1H, m, 3-H), 3.99 (1H, m, 3'-H), 6.29 (1H, br d, J 12, 14'-H), 6.36 (1H, d, J 15, 12'-H), 6.41 (1H, d, J 11.5, 14-H), 6.46 (1H, dd-like, J 12, 1, 10'-H), 6.57 (1H, dd, J 15, 12, 11'-H), 6.58 (1H, dd, J 15, 11, 11-H), 6.65 (1H, dd, J 14.5, 11.5, 15-H), 6.67 (1H, d, J 15, 12-H), 6.75 (1H, dd, J 14.5, 12, 15'-H), 7.15 (1H, dd-like, J 11, 1, 10-H) (Ref. 0006)
598 (M), 582 (M-16), 580 (M-18), 565 (M-18-15), 562 (M-18-18), 506 (M-92), 490 (M-92-16), 488 (M-92-18)
[Spectrum 0010] (Ref. 0035)

HPLC (column: CHIRALCEL OD; DAICEL IND., LTD., 1.0times25 cm, eluent: EtOH-hexane 15:85, temp.: 37degC, flow: 2.4 ml/min) tR = 14.5 min (Ref. 0006)
Sea squirts (Halocynthia roretzi) (Ref. 0035/0401/0402)
Shell fish (Mytilus edulis) (Ref. 0426)
Double Wittig condensations of the C10-dialdehyde with the 8-oxo-C15-phosphonium salt and the acetylenic C15-phosphonium salt provided the C40-skeletal compound, which was treated with MCPBA to afford holocynthiaxanthin. These phosphonium salts were derived from the common intermediate, the C15-a-acetytlenic alcohol, which was synthesized via the coupling reaction of protected (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone with the protected (E)-3-methylpent-2-en-4-yn-1-ol. Key step was effective conversion of the C15-a-acetytlenic alcohol into the C15-8-oxo-compound using oxo-metallic catalyst and subsequent iodine-catalysed double-bond shift. (Ref. 0006)
Sea squirt: fucoxanthin a_right fucoxanthinol a_right halocynthiaxanthin (Ref. 0401)


5
Peridinin
(3S,5R,6S,3'S,5'R,6'R)-5,6-Epoxy-3'-ethanoyloxy-3,5'-dihydroxy-6',7'-didehydro-5,6,5',6'-tetrahydro-12',13',20'-trinor-b,b-caroten-19,11-olide
VCA0005
Masayoshi Ito
C39H50O7 630.810 Download ChemDraw structure file
Anti-tumor activity (Ref. 0097/0217).
Quencher of singlet oxygen in Gonyaulax polyedra (Ref. 1269).
Light-harvesting pigment (Ref. 0008/0009/0042/0043/0044/0046/0221/0222).
An energy transfer pathway in a peridinin-chlorophyll a protein complex (PCP) of Alexandrium tamarense (dinoflagellate) is studied by the femtosecond up-conversion method (Ref. 1114). A peridinin-chlorophyll a protein complex (PCP) of Alexandrium cohorticula (dinoflagellate) contains 37 kDa peptide, 12 peridinin and 2 chlorophyll a molecules per monomer (Ref. 1167).
107-109degC (Ref. 0042)
127-131degC (Ref. 0041)
lmax (nm): ethanol 472 (Ref. 0002); EtOH 475 (E 1%1cm = 1325) (Ref. 0033); hexane 431sh, 456 and 485 (Ref. 0002); acetone 465 (Ref. 0033); hexane/acetone/methanol (89:10:1) 427 sh, 457, 479 sh; hexane 425 sh, 453, 482, %III/II=61 (Ref. 1165); methanol
[Spectrum 1104]
nmax(CD Cl3)/cm-1: 3600 and 3450 (OH), 1928 (allene) and 1742 (C=O) (Ref. 0002)
nmax(KBr)/cm-1: 3427 (OH), 3023-2958, 2853 (CH), 1927 (allene), 1739 (C=O), 1640, 1617, 1596, 1521, 1450 (CH2), 1377 and 1364 (gem-Me), 1247 (C-O acetate), 1182, 1161, 1124, 1070, 1046, 1029, 963 (trans disubstituted C=C), 956, 940, 904 (Ref. 0033)(Ref. 1269)
1H-NMR d(500 MHz, CDCl3): 0.97, 1.20, 1.21 (each 3H, s, 1'-gem-Me and 5'-Me), 1.07 and 1.35 (each 3H, s, 1-gem-Me), 1.26 (1H, dd, J 12.5, 10.5, 2'ax-H), 1.38 (3H, s, 5-Me), 1.38 (1H, dd, J 12, 6, 2ax-H), 1.50 (1H, t-like, J 13, 4ax-H), 1.63 (1H, br d-like, J 12.5, 2'eq-H), 1.64 (1H, dd, J 14.5, 9, 4'ax-H), 1.80 (3H, s, 9-Me), 1.99 (1H, ddd, J 12, 4, 2, 2eq-H), 2.04 (3H, s, OAc), 2.23 (3H, s, 13'-Me), 2.28 (1H, ddd, J 13, 4, 2, 4eq-H), 2.40 (1H, ddd, J 14.5, 4, 1.5, 4'eq-H), 3.90 (1H, m, 3'-H), 5.38 (1H, tt, J 12, 4, 3-H), 5.73 (1H, s, 12'-H), 6.05 (1H, s, 8-H), 6.11 (1H, d, J 12, 10-H), 6.37 (1H, d, J 15.5, 8'-H), 6.38 (1H, dd, J 14, 11, 12-H), 6.45 (1H, d, J 12, 14'-H), 6.51 (1H, dd, J 14, 11, 15-H), 6.61 (2H, dd, J 14, 12, 11-H and 15'-H), 7.02 (1H, s, 10'-H), 7.17 (1H, d, J 15.5, 7'-H)
[Spectrum 0011] (Ref. 0002/0036/0037)
Previously reported 1H-NMR assignments of all-trans-(6'R)-peridinin are partly corrected (Ref. 1165). (Ref. 1269)
13C-NMR d(100.5 MHz, CDCl3): 35.79, 35.31 (1, 1'), 45.43, 47.07 (2, 2'), 68.04, 64.13 (3, 3'), 45.26, 40.90 (4, 4'), 72.60, 67.56 (5, 5'), 117.57, 70.49 (6, 6'), 202.67, 133.62 (7, 7'), 130.29, 121.78 (8, 8'), 133.93, 124.75 (9, 9'), 128.12, 136.34 (10, 10'), 131.51, 146.76 (11, 11'), 133.00, 119.26 (12, 12'), 133.94 (13'), 138.06 (14'), 128.92, 137.25 (15, 15'), 32.07, 29.52 (16, 16'), 29.15, 24.90 (17, 17'), 31.21, 19.88 (18, 18'), 14.00, 168.78 (19, 19'), 15.40 (20'), 170.50 and 21.40 (AcO) (Ref. 0036/0037)
Previously reported 13H-NMR assignments of all-trans-(6'R)-peridinin are partly corrected (Ref. 1165).
(210degC, 70 eV) m/z (ion, intensity relative to base peak in %): 630 (M, 36), 612 (M-18, 30), 594 (M-18-18, 2), 586 (M-44, 1), 570 (M-60, 9), 568 (M-18-44, 2), 552 (M-18-60, 8), 538(M-92, 6), 221 (10), 181 (33) (Ref. 0033/0037/0041)
CD data in EPA solution: De 220 (-7.1), 241 (-4.9), 270 (-4.0), 296 (-0.2), 328(-2.3), 350 (0), 365 (0.5), 404 (0.3)
[Spectrum 0012] (Ref. 0002/0033/3006/0047)
TLC (silica plates, 0.5 mm, Kieselgel 60 Merck, hexane-acetone 7:3) Rf = 0.2 (Ref. 0033)
HPLC (column: LiChrosorb CN(7 mm) 0.4times25 cm, eluent: MeOH-acetone-hexane 1:10:89, flow: 1.5 ml/min) tR = 28 min (Ref. 0002/0003/0004)
HPLC (column: Ultrasphere 5CN 0.46times25 cm, eluent: hexane-isopropyl acetate-acetone-methnol 76:17:7:0.1, flow: 1.5 ml/min) tR = 11.39 min (Ref. 0033)
HPLC (column: Silica Spheri 0.46times25 cm, eluent: hexane-isopropyl acetate-acetone-methnol 76:17:7:0.1, flow: 2.0 ml/min) tR = 24.90 min (Ref. 0033)
Marine dinoflagellate (Gyrodinium resplendens, Amphidinium carterae, etc.) (Ref. 0039/0040/0042/0043)
Marine phytoplankton (Bacilliarophyceae, Dinophyceae, Prymnesiophyceae, Prasinophyceae, Chlorophyceae, Cryptophyceae, Rhodophyceae, Cyanophyceae) (Ref. 0034)
Sea squirt (Botrylloides violaceus) (Ref. 0041)
Sea anemone (Anemonia sulcata) (Ref. 0045)
The C22-allenic sulphone and the C15-5,6-epoxy-formyl ester were synthesized from the common starting meterial, (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone, in 13 and 12 steps, respectively. Rection with the formyl ester with the sulphone in the presence of LDA at -78degC provided peridinin accompanying with its 11'E-isomer.(Ref. 0001/0002/0031)
Shell fish (Mytilus edulis): Peridinin a_right peridinoniol a_right pyrrhoxanthinol a_right Hydrate-pyrrhoxanthinol (Ref. 0404)

Numbering and stereochemistry are revised (Ref. 1165).
6
Pyrrhoxanthin
(3S,5R,6S,3'R)-5,6-Epoxy-3'-ethanoyloxy-3-hydroxy-7',8'-didehydro-5,6-dihydro-12',13',20'-trinor-b,b-caroten-19,11-olide
VCA0006
Masayoshi Ito
C39H48O6 612.795 Download ChemDraw structure file

lmax (nm): ethanol 466 (Ref. 0002); hexane 437sh, 459, 487 (Ref. 0002); acetone (473), 485 (Ref. 0238); methanol 341, 427 (shoulder), 448, 475, %III/II=27.4 (Ref. 1052)
nmax(CD Cl3)/cm-1: 3600 and 3570 (OH), 2160 (acetylene) and 1745 (C=O) (Ref. 0002)
nmax(KBr)/cm-1 (phyrroxanthin acetate): 3020, 2955, 2925 and 2855 (CH), 2170 (acetylene), 1756 and 1740 (CO), 1630, 1520 (C=C), 1460 (CH2), 1379 and 1366 (Me), 1244, 1231, 1127, 1043, 1030(C-O), 986 (trans -CH=CH-), 943, 905, 820, 768, 725, 643 (Ref. 0040)
1H-NMR d(500 MHz, CDCl3): 0.94 (3H, s, 1'-Me), 1.14 (3H, s, 1-Me), 1.16 (6H, s, 1-, 5'-Me), 1.17 (3H, s, 1'-Me), 1.22 (1H, dd, J 12.5, 10, 2'ax-H), 1.53 (2ax-H), 1.60 (1H, br d-like, J 12.5, 2'eq-H), 1.60 (1H, dd, J 14.5, 9, 4'ax-H), 1.80 (1H, ddd, J 12.5, 3, 1.5, 2eq-H), 1.87 (3H, s, 5-Me), 1.96 (3H, s, 9-Me), 2.06 (3H, s, OAc), 2.10 (1H, dd, J 17, 9, 4ax-H), 2.19 (3H, s, 13'-Me), 2.36 (1H, ddd, J 14.5, 5, 1.5, 4'eq-H), 2.46 (1H, br dd, J 17, 5, 4eq-H), 3.87 (1H, m, 3'-H), 5.00 (1H, m, 3-H), 5.70 (1H, s, 12'-H), 6.34 (1H, d, J 15.5, 8'-H), 6.36 (1H, dd, J 14.5, 11.5, 12-H), 6.40 and 6.41 (each 1H, d, J 11.5, 10-H, 14'-H), 6.46 (1H, dd, 14, 11.5, 15-H), 6.54 (1H, dd, J 14.5, 11.5, 11-H), 6.60 (1H, dd, J 14, 11.5, 15'-H), 6.98 (1H, s, 10'-H) and 7.14 (1H, d, J 15.5, 7'-H) (Ref. 0002/0038)
13C-NMR d(100.6 MHz, CDCl3): 36.12, 35.31 (1, 1'), 42.29, 47.12 (2, 2'), 67.90, 67.52 (3, 3'), 37.54, 40.94 (4, 4'), 137.26, 67.52 (5, 5'), 124.27, 70.45 (6, 6'), 90.06, 133.74 (7, 7'), 98.54, 121.79 (8, 8'), 121.00, 124.91 (9, 9'), 134.63, 136.30 (10, 10'), 130.63, 146.93 (11, 11'), 133.74, 119.12 (12, 12'), 134.43 (13'), 137.83 (14'), 136.88, 129.85 (15, 15'), 32.07, 29.52 (16, 16'), 28.67, 24.89 (17, 17'), 22.41, 19.87 (18, 18'), 18.10, 168.73 (19, 19'), 15.43 (20'), 170.70 and 21.39 (AcO) (Ref. 0038)
m/z (ion, intensity relative to base peak in %) (phyrroxanthin acetate): 654 (M, 21.2), 526 (M-28, 0.7), 612 (M-42, 1.2), 594 (M-60, 5.0), 579 (M-75, 2.3), 574 (M-80, 1.0), 562 (M-92, 1.2), 478 (5.7), 450 (1.8), 303 (10.7), 285 (10.6), 233 (7.6), 223 (15.3) (Ref. 0040/0238)
CD data: De 215 (-7.3), 218 (-5.4), 224 (-6.3), 228 (-5.3), 233 (-5.4), 242 (-5.0), 252 (-6.6), 260 (-7.0), 285 (-2.1), 321 (-1.1) (Ref. 0081)
HPLC (column: LiChrosorb CN(7 mm) 0.7times25 cm, eluent: acetone-hexane 12:88, flow: 2.0 ml/min) tR = 20.5 min (Ref. 0002)
TLC (silica plates, acetone-heptane, 2:8) Rf=0.11 (Ref. 0238)
TLC (alkaline plates, acetone-heptane, 3:7) Rf=0.41 (Ref. 0238>
Marine dinoflagellate (Gyrodinium resplendens, Amphidinium carterae, etc.) (Ref. 0039/0040)
Rection with the C15-5,6-epoxy-formyl ester with the C22-acetylenic sulphone in the presence of LDA at -78degC provided pyrroxanthin accompanying with its 11'E-isomer. (Ref. 0002)



7
Zeaxanthin/ (3R,3'R)-Zeaxanthin
(3R,3'R)-b,b-Carotene-3,3'-diol
VCA0007
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file
Antioxidant activity (Ref. 0092/0093/0215/0225/0226) Singlet oxygen quenching activity (Ref. 0215/0230) Reinforcement of phospholipid bilayer (Ref. 0237) Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
Zeaxanthin inhibited the development of mouse spontaneous liver cancer (Ref. 1207). Zeaxanthin showed anticarcinogenic activity in liver in mice (Ref. 1208).
Typical lutein and zeaxanthin levels in the human eye (Ref. 1301). (3R,3'R)-Zeaxanthin, meso-zeaxanthin and (3R,3'R,6'R)-lutein are located in human macular (Ref. 1168/1169). A membrane-associated xanthophyll-binding protein, which is a Pi isoform of human glutathione S-transferase (GSTP1), is purified from hman macula. It binds (3R,3'R)-zeaxanthin and (3R,3'S-meso)-zeaxanthin, but not lutein A (Ref. 1326).

A water-soluble surface-associated complex from Prochlorothrix hallandica composed of two polypeptides of 56 and 58 kDa, zeaxanthin and lipopolysaccaride (Ref. 1161).
207-208degC (Ref. 0014/0049)
lmax (nm) (e): hexane 452 (133692), 480 (116624) (Ref. 0014/0049); EPA (e) 273 (22000), 340 (7300), 450 (139300) (Ref. 0048); methanol 275, 341, 429 (shoulder), 448, 473, %III/II=22
[Spectrum 1105] (Ref. 1064)
nmax(KBr)/cm-1:
[Spectrum 0013] (Ref. 0065)
1H-NMR d(CDCl3): 1.48 (2, 2'ax-H), 1.77 (2,2'eq-H), ca. 4.00 (3, 3'-H), 2.04 (4, 4'ax-H), 2.39 (4,4'eq-H), 6.11 (7, 7'-H), 6.13 (8, 8'-H), 6.16 (10, 10'-H), 6.64 (11, 11'-H), 6.36 (12, 12'-H), ca. 6.26 (14, 14'-H), ca. 6.63 (15, 15'-H), 1.074 (1, 1'-gem-Me), 1.736 (5, 5'-Me), 1.967, 1.972 (9, 9', 13, 13'-Me), ca. 1.35 (OH) (Ref. 0048) More precise data (Ref. 1080)
13C-NMR d(CDCl3): 37.1 (1, 1'), 48.2 (2, 2'), 65.1 (3, 3'), 42.4 (4, 4'), 126.1 (5, 5'), 137.6 (6, 6'), 125.5 (7, 7'), 138.5 (8, 8'), 135.7 (9, 9'), 131.3 (10, 10'), 124.9 (11, 11'), 137.6 (12, 12'), 136.5 (13, 13'), 132.6 (14, 14'), 130.0 (15, 15'), 28.7, 30.2 (1, 1'-gem-Me), 21.7 (5, 5'-Me), 12.8 (9, 9'-Me), 12.8 (13, 13'-Me) (Ref. 0061).
m/z: 568 (M, 100%), 550 (M-18, 84%), 532 (M-18-18, 5%), 489 (M-79, 1%), 476 (M-92, 13%), 462 (M-106, 1%), 458 (M-18-92, 11%), 444 (M-18-106, 1%), 410 (M-158, 5%) (Ref. 0058/0059)
FD-MS m/z: 568 (Ref. 1064)
CD data in EPA solution (25degC): De 225 (-7.7), 254 (+8.1), 290 (-14.6), 348 (+3.7)
[Spectrum 0014] (Ref. 0048/0064/0078)
CD data in EPA solution (25degC): De 224 (-18.0), 236 (0), 245 (+18.0), 260 (0), 284 (-24.0), 325 (0), 350 (+4.0), 380 (+0.5) (Ref. 0405)
HPLC (column: Spherisorb S5W 0.31times50 cm, eluent: hexane-CH2Cl2-isopropyl alcohol-Hünig's base, 90.9:6.5:2.5:0.1)
[Chromatogram 0008] (Ref. 0048)
HPLC (columun: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 90:10:0.1, flow: 1.5 ml/min) tR = ca. 40 min (meso), ca. 45 min (3R,3'R), ca. 50 min (3S,3'S)
[Chromatogram 0009] (Ref. 0069/0405)
A reversed-phase HPLC procedure for quantitative measurement in serum of seven carotenoids (lutein, zeaxanthin, canthaxanthin, b-cryptoxanthin, lycopene, a-carotene and b-carotene) has been developed (Ref. 0227).
Separation of zeaxanthin and lutein by Novapak C18 HPLC column (8 times 100 mm, RCM-type, Waters) (Ref. 1150) and by Spherisorb ODS-1 HPLC column (4.6 times 250 mm) (Ref. 1151).
Sea squirts (Halocynthia roretzi) (Ref. 0035) , Shell fishes (Ref. 0405/0410/0411) , Fishes (Ref. 0405/0410/0411)
Anacystis nidulans (Cyanobacterium) (Ref. 1077), Cyanophora paradoxa (Glaucocystophyte) (Takaichi Shinichi), Red algae (Bangia fucopurupurea, Gigartina stellata, Ceramium rubrum, Polysiphonia brodiaei, Polysiphonia urceolata) (Ref. 0058), Higher plants (Ref. 0409)
Paracoccus zeaxanthinifaciens R1534 (bacterium; previous name Flavobacterium sp.) (Ref. 1236)
Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1055)
The protected (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone was reacted with lithium acetylide and deprotected to give the acetylenic diol, which was acetylated and dehydrated to provide the 3-acetoxy-C11-terminal alkyne. This was converted into the C15-phosphonium salt via the intermediate vinyl carbinol in an overall yield of 72% from the starting hydroxyketone. Wittg condensation of the phosphonium salt with the C10-dialdehyde provided (3R,3'R)-zeaxanthin. (Ref. 0019/0053) (R)- and (S)-3-Hydroxy-b-cycloitrals prepared by hydroboration of safranol isopropenylether with (+)- and (-)-diisopinocampenylborane were transformed into (3R,3'R)-, (3S,3'S)- and (3R,3'S: meso)-zeaxanthin, via the Wittig condensation of the corresponding C15-phosphonium salt with the C10-dialdehyde. (Ref. 0019/0076)The protected (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone was reacted with dimethyl sulphonium methylide to give the allylic epoxide, which was transformed into (R)-3-hydroxy-b-cyclocitral. This was converted into the C15-phosphonium salt, then condensed with the C10-dialdehyde to give (3R,3'R)-zeaxanthin. (Ref. 0014/0057) The protected (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone was transformed with the protected (E)-3-methylpent-2-en-4-yn-1-ol into a C15-intermediate, which was converted into the C15-phosphonium salt. (Ref. 0049) The (R)-3-hydroxy-C15-sulphone was coupled with the C10-dialdehyde using BuLi as a base. The resulting dihydroxy compound was acetylated in situ and treated with aqueous NaOH to afford all-E-11,11'-bis-sulphonyl-zeaxanthin. Subsequent elimination of the sulphonyl group gave (3R,3'R)-zeaxanthin. (Ref. 0026)
The gene product catalyzes the conversion of b-carotene to zeaxanthin by way of b-cryptoxanthin under the presence of O2, Fe2+, and 2-oxoglutarate (Ref. 0205).
Capsicum annuum (pepper) fruits contain two kinds of b-carotene hydroxylase. Both enzymes require iron, ferredoxin and NADPH for activity, use iron activated oxygen to break the C-H bond, and introduce a hydroxyl group (Ref. 1134).
Cofactors of zeaxanthin-epoxidase from spinach are FAD, NAD(P)H and O2 (Ref. 1153).
Zeaxanthin in Sphingobacterium multivorum is synthesized via non-mevalonate pathway (Ref. 1138).
Zeaxanthin is accumulated in the cytoplasmic membranes of Synechococcus sp. strain PCC 7942 (cyanobacteria) grown under high light condition (Ref. 1146).
[Table 1026]

Zeaxanthin is cleavated to crocetindial and hydroxy-b-cyclocitral by b-carotene 7,8(7',8') oxygenase of Microcystis (cyanobacterium) by freezing the cell pellet. The enzyme requires O2 and iron, but is sensitive to sulfhydryl reagents, antioxidants and chelation reagents, and is membrane bound (Ref. 1266).
Carassius auratus (gold fish): Zeaxanthin -> b-carotene-3,4,3'-triol -> b-doradexanthin -> astaxanthin (Ref. 0415) Parasilurus asotus (Japanese common catfish): Zeaxanthin -> parasiloxanthin -> 7,8-dihydroparasiloxanthin (Ref. 0416) Tilapia nilotica (Tilapia): Zeaxanthin -> rhodoxanthin (Ref. 0417) Zeaxanthin -> 3,4-didehydroretinol (Ref. 0417/0216) Zeaxanthin -> e, e-carotene-3,3'-dione -> 3-hydroxy-e, e-caroten-3'-one (Ref. 0417) hen's egg yolk: zeaxanthin -> e,ee-carotene-3,3'-dione (Ref. 0428)
Genes required for the biosynthesis of zeaxanthin from farnesyl diphosphate (FPP) were clarified in epiphytic bacteria Erwinia species for the first time in the beginning of the 1990's (Ref. 0201/1001). Zeaxanthin is synthesized from FPP by five crt gene products, CrtE, CrtB, CrtI, CrtY, and CrtZ (Ref. 1002).
[Table 0003] Nowadays, the b-carotene hydroxylase gene is isolated from various organisms such as gram-negative bacteria (crtZ), cyanobacteria (crtR), and higher plants (crtR-b), and some higher plants contain two kinds of b-carotene hydroxylase genes (Ref. 0202/0204/1013/1014/1133/1134/1279).
Review of characteristics of zeaxanthin epoxidase and violaxanthin de-epoxidase (Ref. 1268)
CrtZ from Thermus thermophilus (Gram-negtive bacteria) is P450-type monooxygenase, while other CrtZ and CrtR are non-heme type (Ref. 1283).
Highly deuterated zeaxanthin has recently been synthesized from fully deuterated mevalonolactone by using triply engineered Escherichia coli, which carries the five Erwinia crt genes from FPP to zeaxanthin and the genes involved in mevalonate pathway from mevalonate to isopentenyl diphosphate (IPP), by a Japanese group (Ref. 1084). This compound should be useful for various biological experiments for examining its metabolism.
Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
8
Mytiloxanthin
(3R,3'S,5'R)-3,3',8'-Trihydroxy-7,8-didehydro-b,k-carotene-6'-one
VCA0008
Masayoshi Ito
C40H54O4 598.854 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
lmax (nm): ether 294, 469 (Ref. 0050); CS2 496 (Ref. 0051); ethanol 470 (Ref. 0051); benzene 480 (e 85700) (Ref. 0051); acetone 470 (Ref. 0238)
nmax(CD Cl3)/cm-1: 3680, 3610, 2950, 2920, 2850, 2170, 1605, 1560, 1460, 1380, 1100, 1050, 1030, 970 (Ref. 0051)
nmax(CD Cl3)/cm-1 : 2170, 965 (Ref. 0051)
1H-NMR d(300 MHz, CDCl3): 1.46 (dd, J 12, 12, 2ax-H), 1.84 (ddd, J 12, 3.5, 2), 3.99 (dddd, J 12, 9.5, 5.5, 3.5, 3-H), 2.07 (dd, J 17.5, 9.5, 4ax-H), 2.43 (dd, ddd, J 17.5, 5.5, 2, 4eq-H), 6.46 (d, J 11.5, 10-H), 6.54 (dd, J 14.5, 11.5, 11-H), 6.36 (d, J 14.5, 12-H), 6.28 (d, J 10.5, 14-H), 6.70 (d, J 14, 10.5, 15-H), 1.15 (s, 1ax-Me), 1.20 (s, 1eq-Me), 1.93 (s, 5-Me), 2.01 (s, 9-Me), 1.98 (s, 13-Me), 2.19 (dd, J 13.5, 8, 2'a-H), 1.72 (dd, J 13.5, 4.5, 2'b-H), 4.53 (dddd, J 8.5, 8, 4.5, 2.5, 3'-H), 2.88 (dd, J 14.5, 8.5, 4'a-H), 1.55 (dd, J 14.5, 2.5, 4'b-H), 5.86 (s, 7'-H), 7.23 (d, J 9.5, 10'-H), 6.62 (dd, J 15, 9.5, 11'-H), 6.65 (d, J 15, 12'H), 6.38 (d, J 10.5, 14'-H), 6.65 (dd, J 14, 10.5, 15'-H), 0.85 (s, 1'a-Me), 1.19 (s, 1'b-Me), 1.35 (s, 5'b-Me), 1.98 (s, 9'Me), 1.99 (s, 13'-Me), 16.30 (s, 8'-OH). (Ref. 0050)
EI-MS m/z (ion, intensity relative to base peak in %): 598 (M, 23), 580 (M-18, 5), 562 (M-36, 1), 471 (M-127, 1), 401 (M-197, 20), 197 (17), 179 (25), 109 (90), 92 (100) (Ref. 0035/0050/0238)
CD data in ether solution: De 225 (-0.5), 280 (0), 294 (+0.7), 305 (0), 360 (-1.0) (Ref. 0050/0051)
TLC (silica plates on alkaline plates, trichloroethane-MeOH, 100:5) Rf=0.36 (Ref. 0238)
HPLC (columun: Shim-Pak Prep-ODS (Shimadzu) (5mm) 2.0times25 cm, eluent: CH2Cl2-MeCN 5:95, flow: 10 ml/min) tR = ca. 7 min [[Maoka Takashi]
Sea squirts (Halocynthia roretzi) (Ref. 0035)
Mussel (Mytilus coruscus, Mytilus edulis, Mytilus californianus) (Ref. 0050/0051/0052/0426/0427/0434)
Condensation of 1-acetyl-1,2,2-trimethyl-4-trimethylsilyloxycyclopentane with methyl 12,12-ethylenedioxy-2,6,11-trimethyldodeca-2,4,6,8,10-pentaenoate, and removal of the protecting group, gave the b-diketone derivatives, which reacted with the C15-acetylenic Wittig salt to yield a cis-isomer of mytiloxanthin. Mytiloxanthin itself has not been synthesized. (Ref. 0051)



9
a-Carotene/ b,e-Carotene
(6'R)-b,e-Carotene
VCA0009
Masayoshi Ito
C40H56 536.873 Download ChemDraw structure file
Singlet oxygen quenching activity (Ref. 0088)
Anti-tumor activity (Ref. 0098/0217/0229)
Antioxidant activity (Ref. 0092/0093)
Preventive action against carcinogenesis (Ref. 0236)
a-Carotene was more potent than b-carotene in suppressing tumorigenesis in skin and lung of mouse (Ref. 1204). The antitumorigenic activity of a-carotene was stronger than that of b-carotene, while both a- and b-carotene inhibited the tumorigenesis in skin, lung, liver and colon in mice (Ref. 1208). a-Carotene reduced the expression of N-myc gene and induced G0/G1 arrest in GOTO cells, and showed more potent inhibitory activity than b-carotene in skin carcinogenesis (Ref. 1209). The moderate dose of a- and b-carotenes and lycopene enhanced gap-junctional intercellular communication (Ref. 1210). Palm carotene and b-carotene inhibited pancreatic carcinogenesis in hamsters, but a-carotene showed no effects (Ref. 1212).
160-162degC (racemate) (Ref. 0082)
178degC (optical active) (Ref. 0083)
(6'S): [a]64318 = -400 (benzene) (Ref. 0083)
(6'S): [a]d-22 = -556 (benzene) (Ref. 0084)
(6'R): [a]64318 = +385 (benzene) (Ref. 0083)
lmax (nm): petro 420, 444, 473 (Ref. 0058/0079); methanol 335, 422 (shoulder), 442, 471, %III/II=61.2
[Spectrum 1106] (Ref. 1052); acetonitrile/methanol/THF (58:35:7) 272, 334, 426 (shoulder), 448, 476, %III/II=58
[Spectrum 1002] (Ref. 1057)
KBr disc or pellet:
[Spectrum 0015] (Ref. 0065)
1H-NMR d(400 MHz, CDCl3): 0.82 and 0.90 (each 3H, s, 1'-gem-Me), 1.03 (6H, s, 1-gem-Me), 1.58 (3H, br s, 5'-Me), 1.72 (3H, s, 5-Me), 1.91 (3H, s, 9'-Me), 1.96 and 1.97 (9H, s, 9-, 13-, 13'-Me), 2.18 (1H, d, J 9, 6'-H), 5.41 (1H, m, 4'-H), 5.52 (1H, dd, J 15.5, 9, 7'-H), 6.14 (2H, s, 7-, 8-H), 6.08-6.68 (ca. 11H, m, conj. olefinic). (Ref. 0079)
m/z: 536 (M, 53%), 480 (M-56, 2%), 444 (M-92, 12%), 430 (M-106, 2%) (Ref. 0058/0079)
CD in EPA solution: De 238 (4.2), 266 (4.0), 298 (0.4), 330 (1.1), 362 (0.1) and 400 (2.0) (Ref. 0079)
TLC (silica gel-G-Ca(OH)2-MgO-CaSO4 (10:4:3:1), petrol-acetone 97:3) Rf = 0.84 (Ref. 0079)
HPLC (column: Vydac 218TP54, acetonitrile-methanol-tetrahydrofuran 40:56:4, flow: 1 ml/min) tR = ca. 10 min
[Chromatogram 0003] (Ref. 0067)
A reversed-phase HPLC procedure for quantitative measurement in serum of seven carotenoids (lutein, zeaxanthin, canthaxanthin, b-cryptoxanthin, lycopenes, a-c arotene and b-carotene) has been developed. (Ref. 0227)
Retinol, a-tocoherol, lutein, all-trans-lycopene, and a- and b-carotenes were determined in human plasma by reversed-phase HPLC. (Ref. 0228)
HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=17.7 min (Ref. 1057)
Nemalion helminthoides, Bonnemaisonia hamifera, Rhodymenia palmata, Ceramium rubrum (red algae) (Ref. 0058)
carrot, palm (higher plants) (Ref. 0236)
Wittig reaction of dehydro-b-apo-12'-carotenal (C25) with a-ionylideneethyl-triphenylphosphonium chroride (C15) using NaOMe as base provided 15,15'-dehydro-a-carotene, which was transformed by partial reduction and isomerization to racemic a-carotene. (Ref. 0082)
The enantiomerically pure a-ionone obtained via resolution of racemic (2,6,6-trimethylcyclohex-2-enyl)prop-2-enoic acid was reacted with vinyl magnesium chloride to give the C15-alcohol. This was converted into the phosphonium salt and then condensed with b-apo-12'-carotenel (C25) using NaOMe as base to give naturally occuring (6'R)-a-carotene in 45% referred to (6'R)-a-ionone. (6'S)-a-carotene has been synthesized in an analogous way. (Ref. 0019)
By use of enantiomeric (S)- and (R)-a-ionones obtained by resolution of the racemate via the methylhydrazones, (6'S)- and (6'R)-a-ionones was synthesized for the first time. (Ref. 0019/0083)
In Arabidopsis, lycopene is at first cyclized to d-carotene by lycopene e-cyclase, and then to a-carotene by lycopene b-cyclase (Ref. 1015). CrtL-e from the marine cyanobacterium Prochlorococcus marinus MED4 has bifunctional activety (lycopene e- and b-cyclases), and poduces a-carotene (Ref. 1242).
Biotechnological achievement has recently been made in relations with the supply of a-carotene, by Calgene LLC, i. e., a transgenic canola (Brassica napus), which accumulates a great amount of a-carotene as well as b-carotene in seeds, has been constructed by over-expressing the Erwinia phytoene synthase gene crtB (Ref. 1016).
Gel filtration of carrot root chromoplasts yields one major carotenoprotein, in which one unit contains one a-carotene and two b-carotene in 54-kDa peptide (Ref. 1272).
10
Lycopene
y,y-Carotene
VCA0010
Masayoshi Ito
C40H56 536.873 Download ChemDraw structure file
Inhibitory effect on colonic aberrant crypt foci formation (anti-tumor promotion) (Ref. 0229/1019)
Effects on intrathymic T cell differentiation and peripheral CD4/CD8 ratio (Ref. 0231)
Singlet oxygen quenching activity (Ref. 0088/0441)
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
Effects lowering risk of prostate cancer (Ref. 1020)
Biological activities of lycopene are antioxidant activity (singlet oxygen quenching and peroxyl radical scavenging), induction of cell-cell communication, and growth control, but no provitamin A activity. Epidemiological studies suggest protective effects of lycopene on some types of cancer, e.g., prostate cancer (Ref. 1154).
Lycopene or tomato-rich diets decrease the prostate cancer risk. No study indicated that higher tomato consumption or lycopene blood levels statistically significantly increased the risk of cancer of any site (Ref. 1170).

The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum (present name; Phaeospirillum molischianum) (purple bacterium): 8* (one lycopene, one B800 BChl, two B850 BChl, one a-polypeptide and one b-polypeptide) (Ref. 1152).
The administration of lycopene in drinking water inhibited the incidences and multiplicities of lung adenomas plus carcinomas combined in mouse multi-organ carcinogenesis model in male mice but not in females (Ref. 1197). The inhibitory effect of tomato juice rich in lycopene (17 ppm) was observed in rat colon carcinogenesis model (Ref. 1198). The tomato juice containing lycopene decreased the numbers, but not incidences, of urinary bladder transitional cell carcinomas in male rats (Ref. 1199). Lycopene (50 ppm in drinking water) had inhibitory effect on lung carcinogenesis in male mice (Ref. 1200). Long-term (6 to 76 weeks of age) administration of a diet containing 0.005% lycopene did not reduce the risk of hepatocarcinogenesis in a rat spontaneous liver carcinogenesis model (Ref. 1201). The inhibitory effect of lycopene containing diet was not seen in rat prostate carcinogenesis models (Ref. 1202). Fucoxanthin, lycopene and lutein decreased the number of aberrant crypt foci in colons in mice (Ref. 1206). Lycopene had anticarcinogenic activities in mammary gland, liver, skin and lung in mouse models, and also inhibited the development of aberrant crypt foci in rat colon (Ref. 1207). The moderate dose of a- and b-carotenes and lycopene enhanced gap-junctional intercellular communication (Ref. 1210). Both lycopene and b-carotene showed no inhibitory effect on the development of rat urinary bladder carcinomas, while combination of carotenoids with NSAID decreased numbers and incidences of cancers (Ref. 1211).
176degC (Ref. 0056>
lmax (nm): hexane 286, 295, 425, 448, 476, 507 (Ref. 0056); methanol 293, 360, 442, 468, 499, %III/II=68.7
[Spectrum 1107] (Ref. 1052/1064); acetonitrile/methanol/THF (58:35:7) 296, 364, 447, 473, 504, %III/II=70
[Spectrum 1003]
[Spectrum 1051] (Ref. 1057); n-hexane 443.0, 470.5, 502.0 (Ref. 1132)
KBr disc or pellet:
[Spectrum 0016] (Ref. 0065)
1H-NMR d(CDCl3): 5.11 (2, 2'-H), ca. 2.11 (3, 3'-H2), ca. 2.11 (4, 4'-H2), 5.95 (6, 6'-H), 6.49 (7, 7'-H), 6.25 (8, 8'-H), 6.18 (10, 10'-H), 6.64 (11, 11'-H), 6.35 (12, 12'-H), 6.25 (14, 14'-H), 6.62 (15, 15'-H), 1.688, 1.612 (1, 1'-gem-Me), 1.818 (5, 5'-Me), 1.968 (9, 9', 13, 13'-Me) (Ref. 0054)
13C-NMR d(CDCl3): 131.64 (1, 1'), 124.12 (2, 2'), 26.83 (3, 3'), 40.30 (4, 4'), 139.30 (5, 5'), 125.94 (6, 6'), 124.87 (7, 7'), 135.54 (8, 8'), 136.15 (9, 9'), 131.64 (10, 10'), 125.21 (11, 11'), 137.46 (12, 12'), 136.54 (13, 13'), 132.71 (14, 14'), 130.17 (15, 15'), 25.66, 17.70 (1, 1'-gem-Me), 16.97 (5, 5'-Me), 12.90 (9, 9'-Me), 12.81 (13, 13'-Me) (Ref. 0054)
(CDCl3) (Ref. 1132)
1H- and 13C-NMR in CDCl3 (Ref. 1251)
m/z: 536 (M, 22%), 467 (M-69), 444 (M-92), 430 (M-106), 378 (M-158), 361 (M-106-69) (Ref. 0059/0060)
FD-MS m/z: 536 (Ref. 1064)
Fluoresence (Ref. 1062)
Raman spectrum in n-hexane (Ref. 1132)
RF-TLC on 0.25 mm RP-18 layers (Merck, Art. 15423) using several ratio of light petroleum (bp 40-60degC)-acetonitrile-methanol ex: 1:6:3 Rf=0.16, 3:1:6 Rf=0.27 (Ref. 0135)
HPLC (column: Nucleosil-300-5 0.4times50 cm, eluent: hexane-N-ethyldiisopropylamine, 2000:1, flow: 0.6 ml/min, detect : 469 nm) tR = ca. 27 min (all-E isomer)
[Chromatogram 0010] (Ref. 0054)
A reversed-phase HPLC procedure for quantitative measurement in serum of seven carotenoids (lutein, zeaxanthin, canthaxanthin, b-cryptoxanthin, lycopenes, a-c arotene and b-carotene) has been developed. (Ref. 0227)
Retinol, a-tocoherol, lutein, all-trans-lycopene, and a- and b-carotenes were determined in human plasma by reversed-phase HPLC. (Ref. 0228)
HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=11.4 min (Ref. 1057)
Phtosynthetic bacteria (Rhdospirillaceae, Chromatiaceae, Chrorobiaceae) (Ref. 0409)
Non-photosynthetic bacteria (Mycobacteriacea) (Ref. 0409)
Fungi (Phycomycetes, Axcomycetes, Deuteromycetes) (Ref. 0409)
Lycopersicon esculentum (tomato) (Ref. 0409)
Fruits, flowers, leaves, seeds of higher plant (Ref. 0409)
Rhabdochromatium marinum (purple photosynthetic bacterium) accumulates lycopene (Ref. 1119).
Reaction of y-ionone (C13) with propagyl bromide in the presence of zinc gave the acetylenic alcohol, which was acetylated followed by elimination of acetic acid by treatment with potassium t-butoxide to provide the C16-terminal alkyne. This was transformed to the Grignard reagent, which was coupled with the C8-diketone to give the C40-acetylenic diol. The dehydration with NBS gave lycopene in overall yield of 18%. (Ref. 0018)
Geranyl bromide, obtained from linalol and phosphorous tribromide, was converted with triphenylphosphine into the C10-phosphonium salt. The Wittig reaction with crocetindialdehyde (C20) and BuLi as base gave lycopene in an overall yield of 36%. (Ref. 0018/0055)
y-Ionone was reacted with lithium acetylide to give the a-acetylenic alcohol, which was reduced with H2 and Lindlar catalyst to provide vinyl-y-ionol. This was converted with triphenylphosphine hydrobromide with the C15-phosphonium salt, and condensed with the C10-dialdehyde using sodium methoxide as base to give lycopene in an overall yield of 20%. (Ref. 0018/0056)
Geranyldiethylamine was converted into geranylsulphone (C10) by reaction with ethyl chloroformate and sodium chlorophenylsulphate. Treatment of this sulphone with BuLi, crocetindialdehyde (C20), acetic anhydride and base led to the C40-disulphone with a di-cis configuration. Reduction with disodium dithionite gave all-E-lycopene. (Ref. 0018/0026)

[Table 1023] Lycopene is synthesized from phytoene and z-carotene through four-step (CrtI) and two-step (CrtQ, ZDS) dehydrogenation reactoins, by carotenogenic microorganisms such as bacteria Erwinia and Rhodobacter species and the fungus Neurospora crassa, and by plants including algae and cyanobacteria, respectively (Ref. 1002/1003/1004/1005).
Carotene isomerase, CrtH from Synechocystis sp. PCC 6803 (cyanobacterium) (Ref. 1177/1178) and Chlorobium tepidum (green sulfur bacterium) (Ref. 1295) and CrtISO from Arabidopsis (Ref. 1179) and tomato (Ref. 1180), is involved in the synthesis of all-trans lycopene from poly-cis lycopene (Ref. 1230), and under the light condition, this process is catalyzed by light, photoisomerization.
CrtI is inhibited by diphynylamine, and CrtQ/ZDS is inhibited by a herbicide J852 (Ref. 1004/1191). CrtQ is inhibited by 4-phenyl-3-(substituted benzylthio)-4H-1,2,4-triazoles in lettuse leaves (Ref. 1302).
A plastid terminal oxidase (PTOX) is a cofactor of PDS and ZDS in plants, such as Arabidopsis, tomato, peper and rice (Ref. 1187/1188/1189).

The first carotenoid in the normal spirilloxanthin pathway of purple photosynthetic bacteria (Ref. 1054). Rhabdochromatium marinum (purple photosynthetic bacterium) accumulates lycopene (Ref. 1119), and this may due to low activity of CrtC in the normal spirilloxanthin pathway (Ref. 1054).
Lycopene is a substrate of CrtC from Rubrivivax gelatinosus and Rhodobacter capsulatus (photosynthetic bacteria) to produce rhodopin (Ref. 1255).
Genes required for the biosynthesis of lycopene from farnesyl diphosphate (FPP) were clarified in epiphytic bacteria Erwinia species for the first time in the beginning of the 1990's (Ref. 0201/1001). Lycopene is synthesized from FPP by three crt gene products, CrtE, CrtB, and CrtI (Ref. 1002/1064).
[Table 0005] Nowadays, many corresponding genes are isolated from various organisms such as higher plants, cyanobacteria, fungi, and yeasts as well as bacteria, and the functions of the genes are elucidated (Ref. 0202/1002/1003/1004/1005). Phytoene is the direct substrate for the synthesis of lycopene, in the case catalyzed by phytoene desaturase (CrtI), which is derived from bacteria, fungi, and yeasts (Ref. 0206/1021). z-Carotene is the direct substrate for lycopene synthesis, in the case catalyzed by the plant-type desaturation enzyme, z-carotene desaturase (ZDS, CrtQ) (Ref. 1022/1131/1287).
[Table 0004]
Neurosporene is the major product of CrtI from Rubrivivax gelatinosus (purple photosynthetic bacterium) resulting in the synthesis of spheroidene, and lycopene is the minor resulting in the synthesis of spirilloxanthin (Ref. 1107).
The crtI mutants by random and site-directed mutagenesis of Rhodobacter sphaeroides, which produces only neurosporene, change to prodece also lycopene (Ref. 1116).
Bond lengths, bond angles and dihedral angles determined by AM1 calculation (Ref. 1251).
11
meso-Zeaxanthin/ (3R,3'S)-Zeaxanthin
(3R,3'S)-b,b-Carotene-3,3'-diol
VCA0011
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file
(3R,3'R)-Zeaxanthin, meso-zeaxanthin and (3R,3'R,6'R)-lutein are located in human macular (Ref. 1168/1169). A membrane-associated xanthophyll-binding protein, which is a Pi isoform of human glutathione S-transferase (GSTP1), is purified from hman macula. It binds (3R,3'R)-zeaxanthin and (3R,3'S-meso)-zeaxanthin, but not lutein A (Ref. 1326).
212-213 degC (Ref. 0076)
lmax (nm) (e): hexane 273 (360), 403 (902), 430sh (1710), 449 (2410), 477 (2130) (Ref. 0076)
nmax(KBr)/cm-1:
[Spectrum 0013] (Ref. 0065)
1H-NMR d(CDCl3, 270 MHz): 1.073 (12H, s, 1,1'-gem-Me), 1.415 (2H, d, J 4, OH), 1.47 (2H, t, J 12, 2,2'ax-H), 1.738 (6H, s, 5,5'-Me), 1.765 (2H, dt, J 12, 2.5, 2,2'eq-H), 1.972 (12H, s, 9',9',13,13'-Me), 2.035 (2H, dd, J 17, 9.5, 4,4'ax-H), 2.385 (2H, dd, J 17, 5.5, 4,4'eq-H), 3.98 (2H, m, 3,3'-H), 6.117 (4H, s, 7,7',8,8'-H), 6.155 (2H, d, J 11, 10, 10,10'-H), 6.255 (2H, d, J 9, 14,14'-H), 6.360 (2H, d, J 15, 12,12'-H), 6.55-6.74 (4H, m, 11,11',15,15'-H) (Ref. 0076)
m/z: 568 (M, 100%), 550 (M-18, 84%), 532 (M-18-18, 5%), 489 (M-79, 1%), 476 (M-92, 13%), 462 (M-106, 1%), 458 (M-18-92, 11%), 444 (M-18-106, 1%), 410 (M-158, 5%) (Ref. 0058)
CD data in EPA solution (25degC): no optical activity (Ref. 0405)
HPLC column: Spherisorb S5W 0.31times50 cm, eluent: hexane-CH2Cl2-isopropyl alcohol-Hünig's base (90.9:6.5:2.5:0.1)
[Chromatogram 0008] --- (3R,3'R)-zeaxanthin (Ref. 0048)
HPLC columun: Sumipax OA-2000 (5mm) 0.8times30 cmeluent: hexane-CH2Cl2-EtOH 90:10:0.1, flow: 1.5 ml/min tR = ca. 40 min (meso)-zeaxamthin, ca. 45 min (3R,3'R), ca. 50 min (3S3'S)
[Chromatogram 0009] (Ref. 0069/0405)
Shrimp (Paratya compressa compressa) (Ref. 0405)
Fish (Oncorhynchus keta, Seriola quinqueraduata, Micropterus salmoides, Tilapia nilotica, Stephanolepis cirrhifer, Salmo gairdneri) (Ref. 0405)
Fish (Salmo salar, Salmo gairdneri) (Ref. 0406/0407)
Human macular (Ref. 1168/1169).
(R)- and (S)-3-Hydroxy-b-cycloitrals prepared by hydroboration of safranol isopropenylether with (+)- and (-)-diisopinocampenylborane were transformed into (3R,3'R)-, (3S,3'S)- and (3R,3'S: meso)-zeaxanthin, via the Wittig condensation of the corresponding C15-phosphonium salt with the C10-dialdehyde. (Ref. 0019/0076)


Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
12
(3S,3'S)-Zeaxanthin
(3S,3'S)-b,b-Carotene-3,3'-diol
VCA0012
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

209-209.5degC (Ref. 0076)
lmax (nm) (e): hexane 275 (404), 407sh (932), 432sh (1745), 453 (2500), 481 (2205) (Ref. 0076)
nmax(KBr)/cm-1:
[Spectrum 0013] (Ref. 0065)
1H-NMR d(CDCl3, 270 MHz): 1.073 (12H, s, 1,1'-gem-Me), 1.415 (2H, d, J 4, OH), 1.47 (2H, t, J 12, 2,2'ax-H), 1.738 (6H, s, 5,5'-Me), 1.765 (2H, dt, J 12, 2.5, 2,2'eq-H), 1.972 (12H, s, 9',9',13,13'-Me), 2.035 (2H, dd, J 17, 9.5, 4,4'ax-H), 2.385 (2H, dd, J 17, 5.5, 4,4'eq-H), 3.98 (2H, m, 3,3'-H), 6.117 (4H, s, 7,7',8,8'-H), 6.155 (2H, d, J 11, 10, 10,10'-H), 6.255 (2H, d, J 9, 14,14'-H), 6.360 (2H, d, J 15, 12,12'-H), 6.55-6.74 (4H, m, 11,11',15,15'-H) (Ref. 0076)
m/z: 568 (M, 100%), 550 (M-18, 84%), 532 (M-18-18, 5%), 489 (M-79, 1%), 476 (M-92, 13%), 462 (M-106, 1%), 458 (M-18-92, 11%), 444 (M-18-106, 1%), 410 (M-158, 5%) (Ref. 0058)
CD data: 225 (+9.72), 251 (-9.38), 289 (+13.65), 347 (-3.99) (Ref. 0076)
CD data in EPA solution (25degC): De 224 (+18.0), 236 (0), 245 (-18.0), 260 (0), 284 (+24.0), 325 (0), 350 (-4.0), 380 (-0.5) (Ref. 0405)
HPLC column: Spherisorb S5W 0.31times50 cm, eluent: hexane-CH2Cl2-isopropyl alcohol-Hünig's base (90.9:6.5:2.5:0.1)
[Chromatogram 0008] --- (3R,3'R)-zeaxanthin (Ref. 0048)
HPLC columun: Sumipax OA-2000 (5mm) 0.8times30 cmeluent: hexane-CH2Cl2-EtOH 90:10:0.1, flow: 1.5 ml/min tR = ca. 40 min (meso)-zeaxamthin, ca. 45 min (3R,3'R), ca. 50 min (3S3'S)
[Chromatogram 0009] (Ref. 0069/0405)
Shrimp (Paratya compressa compressa) (Ref. 0405)
Fish (Oncorhynchus keta, Seriola quinqueraduata, Micropterus salmoides, Tilapia nilotica, Stephanolepis cirrhifer, Salmo gairdneri) (Ref. 0405)
Fish (Salmo salar, Salmo gairdneri) (Ref. 0406/0407)
(R)- and (S)-3-Hydroxy-b-cycloitrals prepared by hydroboration of safranol isopropenylether with (+)- and (-)-diisopinocampenylborane were transformed into (3R,3'R)-, (3S,3'S)- and (3R,3'S: meso)-zeaxanthin, via the Wittig condensation of the corresponding C15-phosphonium salt with the C10-dialdehyde. (Ref. 0019/0076)


Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
13
Astaxanthin glucoside
(3S,3'S)-3-(b-D-Glucopyranosyloxy)-3'-hydroxy-b,b-carotene-4,4'-dione
VCA0013
Masayoshi Ito
C46H62O9 758.979 Download ChemDraw structure file

lmax (nm): benzene 487 (Ref. 0085)
1H-NMR d(CDCl3): 2.04 (t, J 14, 2-H), 2.15 (dd, J 14, 6, 2-H), 4.40 (dd, J 14, 6, 3-H), 1.23 and 1.35 (s, 1-gem-Me), 1.91 (s, 5-Me), 1.81 (t, J 13, 2'-H), 2.16 (dd, J 13, 6, 2'-H), 4.32 (ddd, 13, 6, 2, 3'-H), 1.21 and 1.32 (s, 1'-gem-Me), 1.94 (s, 5'-Me), 1.99-2.01 (s, 19,19',20,20'-Me), 6.20-6.70 (14H, m, olefinic-H), 4.57 (d, J 8, 1''-H), 3.45 (dd, J 9, 8, 2''-H), 3.61 (m, 3''-H), 3.61 (m, 4''-H), 3.41 (m, 5''-H), 3.83 and 3.93 (m, 6''-H2) (Ref. 0085)
13C-NMR d(CDCl3): 37.4 (1), 44.7 (2), 77.6 (3), 199.3 (4), 127.9 (5), 162.4 (6), 123.0 (7), 142.7 (8), 134.4 (9), 135.5 (10), 124.5 (11), 140.0 (12), 136.8 (13), 134.0 (14), 130.6 (15), 26.6 and 30.6 (1-gem-Me), 14.1 (5-Me), 12.59 (9-Me), 12.84 (13-Me), 36.8 (1'), 45.5 (2'), 69.2 (3'), 200.4 (4'), 126.9 (5'), 162.2 (6'), 123.3 (7'), 142.3 (8'), 134.6 (9'), 135.1 (10'), 124.7 (11'), 139.7 (12'), 136.7 (13'), 133.8 (14'), 130.8 (15'), 26.2 and 30.8 (1'-gem-Me), 14.0 (5'-Me), 12.58 (9'-Me), 12.83 (13'-Me), 104.9 (1''), 74.3 (2''), 77.2 (3''), 70.3 (4''), 75.7 (5''), 62.7 (6'') (Ref. 0085)
HRFABMS m/z: 759.4474 [M+H]+ (Ref. 0085)
CD data: De 242 (-12.0), 274 (+10.1), 314 (-18.5) (Ref. 0085)
HPLC (columun: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR = 3.92 min
[Chromatogram 0011] (Ref. 0085)
Agrobacterium aurantiacum (marine bacterium; present name, Paracoccus sp. N81106) (Ref. 0085) It has recently been shown that this bacterium belongs to Paracoccus species according to their16S rDNA analysis, performed by T. Hamada of Marine Biotechnology Institute (DDBJ accession number: AB008114).


Escherichia coli, which carries the Erwinia crtE, crtB, crtI, crtY, crtZ, and crtX genes and the crtW gene of Agrobacterium aurantiacum, accumulates astaxanthin-b-glucoside in addition to astaxanthin-b-D-diglucoside of the final product (Ref. 1027).

14
Adonixanthin/ 4-Ketozeaxanthin
(3S,3'R)-3,3'-Dihydroxy-b,b-caroten-4-one
VCA0014
Masayoshi Ito
C40H54O3 582.855 Download ChemDraw structure file

(3R,3'R)-Isomer: 180-181degC; (3R,3'S)-isomer: 181.5-182.5degC; (3S,3'R)-isomer: 180-181degC (Ref. 0077>
lmax (nm) (e): CHCl3 304 (16695), 480 (105444) (Ref. 0077); hexane 297 (18116), 459 (118149) (Ref. 0077); benzene 472 (116980) (Ref. 0077); ethanol 299 (16252), 465 (108660) (Ref. 0077)
nmax/cm-1:3433s (OH), 1658s (conj. CO), 1557m, 1516m (conj. C=C), 1074m, 1038m (sek. OH), 964s (trans CH=CH) (Ref. 0077)
1H-NMR d(270 MHz, CDCl3): 1.075 (s, 1'-gem-Me), 1.213 (s, 1eq-Me), 1.322 (s, 1ax-Me), 1.48 (t, J 12, 2'ax-H), 1.738 (s, 5'-Me), 1.774 (m, 2'eq-H), 1.810 (t, J 13.5, 2ax-H), 1.948 (d, J 0.8, 5-Me), 1.974 (s, 9'-Me), ca. 1.983 (s, 13-, 13'-Me), 1.998 (s, 9-Me), 2.045 (dd, J 17.5, 10, 4'ax-H), 2.16 (dd, J 12.5, 5.5, 2eq-H), 2.39 (dd, J 17.5, 5, 4'eq-H), 3.704 (d, J 1.8, 3-OH), ca. 4.0 (br m, 3'ax-H), 4.33 (ddd, J 14, 6, 1.8, 3ax-H), ca. 6.13 (s, 7'-, 8'-H), 6.16 (d, J 11.5, 10'-H), 6.21 (d, J 16, 7-H), ca. 6.24-6.33 (m, 14-, 14'-, 10-H), 6.37 (d, J 15, 12'-H), 6.44 (d, J 16, 8-H), 6.45 (d, J 15, 12-H), ca. 6.65 (m, 11-, 11'-, 15-, 15'-H) (Ref. 0077)
13C-NMR d(100.6 MHz, CDCl3): 12.55 (9-Me), 12.76, 12.78, 12.85 (13-, 9'-13'-Me), 14.0 (5-Me), 21.62 (5'-Me), 26.14, 30.73 (1-gem-Me), 28.72 (1'ax-Me), 30.25 (1'eq-Me), 36.79 (C1), 37.11 (C1'), 42.54 (C4'), 45.38 (C2), 48.39 (C2'), 65.02 (C3'), 69.20 (C3), 123.11 (C7), 124.26 (C11), 125.26 (C11'), 125.75 (C7'), 126.23 (C5'), 126.72 (C5), 129.80, 130.94 (C15, C15'), 131.22 (C10'), 132.42 (C14'), 134.01 (C14), 134.29 (C9), 135.29 (C10), 135.94 (C9'), 136.07, 137.10 (C13, C13'), 137.42 (C12'), 137.71 (C6'), 138.42 (C8'), 139.86 (C12), 142.43 (C8), 162.27 (C6), 200.40 (C4) (Ref. 0077)
m/z (ion, intensity relative to base peak in %): 566 (M, 31), 564 (9), 548 (5), 474 (4), 412 (6), 203 (62), 159 (50), 145 (45), 119 (74), 105 (81), 91 (100), 69 (68), 55 (68), 41 (67) (Ref. 0077)
CD data in EPA solution De: (3R,3'S)-isomer: 363 (-2.94), 307 (20.75), 290sh (11.38), 264 (-12.43) , 238 (10.43); (3R,3'R)-isomer: 369 (3.74), 307 (4.68), 293sh (2.66), 285sh (1.26) , 263 (-2.50), 246 (-0.63); (3S,3'R)-isomer: 366 (2.40), 307 (-18.95), 292sh (-11.64), 264 (11.12) , 238 (-9.85); (3S,3'S)-isomer: 371 (-3.83), 329 (-0.29), 307 (-4.87), 293sh (-2.95) , 283sh (-1.32), 264 (1.71), 243 (-0.21) (Ref. 0064/0077/0078)
HPLC (columun: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR = 8.37 min
[Chromatogram 0012] (Ref. 0085)
HPLC (columun: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, follwed by 5 min-linear gradient MeOH-THF 7:3, and then MeOH-THF 7:3 for 5 min) b-carotene, echinenone, b-cryptoxanthin, 3-hydroxy-echinenone, cantaxanthin, 3'-hydroxy-echinenone, cis-adonixanthin, adonirubin, adonixanthin and astaxanthin were separated. tR = 8.32 min for adnixanthin (Ref. 0208)
Adonis annua (flower petals of higher plant) (Ref. 0412)
Pannulis japonicus (Spiny Lobster) (Ref. 0413)
Carassius auratus (Gold fish) as b-doradexanthin (Ref. 0412/0415)
Agrobacterium aurantiacum, Alcaligenes sp. strain PC-1 (marine bacteria; present name, Paracoccus sp. N81106 and MBIC03024, respectively) (Ref. 0068/0085) It has recently been shown that these marine bacteria belong to Paracoccus species according to their16S rDNA analysis, performed by T. Hamada of Marine Biotechnology Institute (DDBJ accession number: AB008114).
Brevundimonas sp. SD212 (bacterium) (Ref. 1343)
The Wittig condensation of the enantiomeric C25-apocarotenal with the enantiomeric C15-phosphonium salt by use of NaOMe as base provided (3R,3'R)-, (3R,3'S)-, (3S, 3'R)-, (3S, 3'S)-adnixanthin in ca. 45 % yield. (Ref. 0077)

Escherichia coli, which carries the Erwinia crtE, crtB, crtI, and crtY genes and the crtZ and crtW genes derived from Erwinia species or Agrobacterium aurantiacum, accumulates adonixanthin as one of intermediary metabolites in addition to astaxanthin of the final product (Ref. 0202).

15
Adonixanthin 3-glucoside/ Adonixanthin 3-b-D-glucoside
(3S,3'R)-3-(b-D-Glucopyranosyloxy)-3'-hydroxy-b,b-caroten-4-one
VCA0015
Masayoshi Ito
C46H64O8 744.996 Download ChemDraw structure file

lmax (nm): benzene 476 (Ref. 0085)
1H-NMR d(CDCl3): 2.04 (m, 2-H), 2.15 (dd, J 14, 6, 2-H), 4.40 (dd, J 14, 6, 3-H), 1.23 and 1.35 (s, 1-gem-Me), 1.91 (s, 5-Me), 1.48 (t, J 12, 2'-H), 1.77 (ddd, J 12, 4, 2, 2'-H), 4.00 (m, 3'-H), 2.05 (m, 4'-H), 2.39 (ddd, J 17, 6, 2, 4'-H), 1.08 (s, 1'-gem-Me), 1.74 (s, 5'-Me), 1.98-2.00 (s, 19,19',20,20'-Me), 6.10-6.70 (14H, m, olefinic-H), 4.57 (d, J 8, 1''-H), 3.45 (dd, J 9, 8, 2''-H), 3.61 (m, 3''-H), 3.61 (m, 4''-H), 3.41 (m, 5''-H), 3.83 and 3.93 (m, 6''-H2) (Ref. 0085)
HRFABMS m/z: 745.4689 [M+H]+ (Ref. 0085)
CD data: De 234 (-14.2), 260 (+17.4), 301 (-21.4) (Ref. 0085)
HPLC (columun: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR = 4.84 min
[Chromatogram 0012] (Ref. 0085)
Marine bacterium ---Agrobacterium aurantiacum (Rhizobiaceae; present name, Paracoccus sp. N81106) (Ref. 0085)




16
Lutein/ Lutein A
(3R,3'R,6'R)-b,e-Carotene-3,3'-diol
VCA0016
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217). Inhibitory effect on colonic aberrant crypt foci formation (anti-tumor promotion) (Ref. 0229). Singlet oxygen quenching activity (Ref. 0088/0230/0441). Scavenging effect against free radical (Ref. 0215).
Lycopene and lutein showed the anti-tumor promoting activities in mouse two-stage skin carcinogenesis and decreased the number of aberrant crypt foci in rat colon (Ref. 1205). Fucoxanthin, lycopene and lutein decreased the number of aberrant crypt foci in colons in mice (Ref. 1206). Lutein and b-cryptoxanthin suppressed tumorigenesis in skin and colon in mice (Ref. 1208).
A carotenoid binding protein is isolated from silk glands of Bombyx mori larvae. The Y (yellow hemolymph) gene (AF309498) encods this 33 kDa protein, and one lutein bonds (Ref. 1183).
Typical lutein and zeaxanthin levels in the human eye (Ref. 1301). (3R,3'R)-Zeaxanthin, meso-zeaxanthin and (3R,3'R,6'R)-lutein are located in human macular (Ref. 1168/1169). A membrane-associated xanthophyll-binding protein, which is a Pi isoform of human glutathione S-transferase (GSTP1), is purified from hman macula. It binds (3R,3'R)-zeaxanthin and (3R,3'S-meso)-zeaxanthin, but not lutein A (Ref. 1326).

Crystal structure of spinach major light-harvesting complex (LHCII) contains 2 lutein, 1 9'-cis neoxanthin, 1 (violaxanthin, antheraxanthin or zeaxanthin), 8 chlorophyll a, and 6 chlorophyll b per monomer (Ref. 1291).
183-185degC (Ref. 0086) 174-178degC (Ref. 1078)
lmax (nm) (e): dioxane 429 (1680), 453 (2515), 482 (2259) (Ref. 0086); methanol 330, 422 (shoulder), 443, 470, %III/II=61.7
[Spectrum 1108] (Ref. 1052)
1H-NMR d(270 MHz, CDCl3): 0.849, 0.998 (6H, s, 1'-gem-Me), 1.074 (6H, s, 1-gem-Me), 1.37 (1H, dd, J 13, 7, 2'ax-H), 1.48 (1H, t, J 12, 2ax-H), 1.626 (3H, s, 5'-Me), 1.739 (3H, s, 5-Me), 1.84 (1H, dd, J 13, 6, 2'eq-H), 1.912 (3H, s, 9'-Me), 1.970 (9H, s, 9-, 13-, 13'-Me), 2.04 (1H, dd, J 17, 10, 4ax-H), ca. 2.33-2.45 (2H, m, 6'-, 4eq-H), ca. 4.0 (1H, m, 3-H), 4.25 (1H, 3'-H), 5.43 (1H, dd, J 15.5, 10, 7'-H), 5.55 (1H, s, 4'-H), ca. 6.12 (2H, s, 7-, 8-H), ca. 6.15 (3H, m, 8'-, 10-, 10'-H), ca. 6.26 (2H, m, 14-, 14'-H), 6.36 (2H, d, J 15, 12-, 12'-H), ca. 6.55-6.71 (4H, m, 11-, 11'-, 15-, 15'-H) (Ref. 0086/0128/1080)
13C-NMR d(CDCl3): 37.1 (C1), 48.4 (C2), 65.1 (C3), 42.5 (C4), 126.2 (C5), 137.6 (C6), 125.6 (C7), 138.5 (C8), 135.6 (C9), 131.3 (C10), 124.9 (C11), 137.6 (C12), 136.5 (C13), 132.6 (C14), 130.0 (C15), 28.7, 30.2 (1-gem-Me), 21.6 (5-Me), 12.7 (9-Me), 12.7 (13-Me), 34.0 (C1'), 44.7 (C2'), 65.9 (C3'), 125.6 (C4'), 137.8 (C5'), 55.0 (C6'), 128.6 (C7'), 137.8 (C8'), 135.0 (C9'), 130.8 (C10'), 124.5 (C11'), 137.6 (C12'), 136.5 (C13'), 132.6 (C14'), 130.0 (C15'), 24.3, 29.5 (1'-gem-Me), 22.8 (5'-Me), 13.2 (9'-Me), 12.7 (13'-Me) (Ref. 0061).
CD: 247.5 (+6.33), 288 (-2.39) (Ref. 0086)
CD data in EPA solution (25degC): De 220 (+2.0), 245 (+8.0), 275 (0), 284 (-4.5), 370 (-0.5) (Ref. 0117/0116)
RF-TLC on 0.25 mm RP-18 layers (Merck, Art. 15423) using several ratio of light petroleum (bp 40-60degC)-acetonitrile-methanol ex: 1:6:3 Rf=0.30, 3:1:6 Rf=0.63 (Ref. 0135)
A reversed-phase HPLC procedure for quantitative measurement in serum of seven carotenoids (lutein, zeaxanthin, canthaxanthin, b-cryptoxanthin, lycopenes, a-c arotene and b-carotene) has been developed. (Ref. 0227)
Retinol, a-tocoherol, lutein, all-trans-lycopene, and a- and b-carotenes were determined in human plasma by reversed-phase HPLC. (Ref. 0228)
HPLC (column: Spherisorb 5S, eluent: hexane-CH2Cl2-2-Propanol-NEt(iso-Pr)2 90.9:6.5:2.5:0.1) (Ref. 0128)
Separation of zeaxanthin and lutein by Novapak C18 HPLC column (8 times 100 mm, RCM-type, Waters) (Ref. 1150) and by Spherisorb ODS-1 HPLC column (4.6 times 250 mm) (Ref. 1151).
Algae (Chlorophyta) (Ref. 0409)
Fruits, flowers, leaves, seeds of higher plant (Ref. 0409)
Birds, birds' egg yolk, fish, fish eggs, shellfish, insect, reptiles (Ref. 0410)
Parnus major (bird) (Ref. 0429)
Lutein is the major carotenoid in the yellow facial skin of Egyptian vulture (bird), which includes ungulate faeces in its diet for cosmetic purposes (Ref. 1184).
Reaction of (S)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-one with mesyl chloride followed by treatment with tetrabutylammonium acetate gave the acetoxyketone with complete inversion of configuration, which was readily transformed into the protected (R)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-one. Diastereoselective epoxidation of this protected hydroxyketone with dimethyl sulphonium methylide followed by stereoselective opening of the epoxide with Grignard reagent gave the protected hydroxy-a-cyclocitral. This was converted into the C15-phosphonium chloride, which was condensed with C25-apocarotenal by use of KOH as base to give (3R,3'R,6'R)-lutein in 25% yield referred to apocarotenal. (Ref. 0014/0019/0086)
Carassius auratus (gold fish): Lutein a_right 3'-epilutein a_right a-carotene-3,4,3'-triol a_right a-doradexanthin (Ref. 0415)
Hen's egg yolk: Lutein a_right e,e-carotene-3,3'-dione (Ref. 0427/0428)
Tilapia (Tilapia nilotica): Lutein a_right tunaxanthin (Ref. 0417)
Lutein a_right 3,4-didehydroretinol (Ref. 0417/0217)
[Table 1028]
From a-carotene, b-carotene hydroxylase (CrtR-b) and e-carotene hydroxylase (LUT1, CrtR-e) produce lutein A (Ref. 1280>.

17
(3R,3'R)-Astaxanthin
(3R,3'R)-3,3'-Dihydroxy-b,b-carotene-4,4'-dione
VCA0017
Masayoshi Ito
C40H52O4 596.838 Download ChemDraw structure file
Antioxidant activity (Ref. 0092/0093/0215)
Singlet oxygen quenching activity (Ref. 0088/0230/0441)
Immunomodulating action (Ref. 0213)
Chemoprevention of carcinogenesis (Ref. 0218/0219)
lmax (nm) (e): CHCl 3492 (1920) (Ref. 0010/0077)
nmax(KBr)/cm-1: 3486m (OH), 1664s (conj. CO), 1607m, 1557s (C=C), 1399w, 1390m, 1366w (gem. Dimetyl), 1076s, 1039m (OH) and 969s (CH=CH, trans)
[Spectrum 0003] (Ref. 0010/0077)
1H-NMR d(500 MHz, CDCl3): 1.21 and 1.32 (each 6H, s, 1, 1'-gem-Me), 1.81 (2H, t, J 13, 2, 2'-Hax), 1.94 (6H, s, 5, 5'-Me), 1.98 and 2.00 (each 6H, s, 9, 9', 13, 13'-Me), 2.16 (2H, dd, J 6 and 13, 2, 2'-Heq), 3.67 (2H, d, J 2, 3, 3'-OH), 4.32 (2H, ddd, J 2, 6 and13, 3, 3'-H) and 6.20-6.70 (14H, m, olefinic-H) (Ref. 0068/0077)
m/z: 596 (M), (M-16), (M-16-16), (M-79), (M-92), (M-106), (M-92-16), (M-106-16), (M-154), (M-167), (M-207), (M-219), (M-233) (Ref. 0058/0077)
CD data in EPA solution (25degC): De 240 (+20.0), 252 (0), 270 (-20.0), 284 (0), 314 (+34.0), 355 (0), 372 (-3.0) (Ref. 0421)
TLC (Kieselgel 60 Merck, CH2Cl2-acetone-formic acid 95:5:3) Rf = 0.3 --- (3S,3'S)-astaxanthin (Ref. 0010)
HPLC (column: Sumipax OA-2000 (10mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 48:16:0.6, flow: 0.8 ml/min) tR = ca. 57 min (3R,3'R), ca. 60 min (meso), ca. 64 min (3S,3'S)
[Chromatogram 0004] (Ref. 0069/0070/0210)
HPLC (column: LiChrosorb SI 60 (5 mm) 0.32times50 cm, eluent: hexane-ethyl acetate-acetonitrile 88:10:2, flow: 0.8 ml/min) tR = ca. 42 min (diacetate of all-E isomer)
[Chromatogram 0005] --- racemic astaxanthin (Ref. 0071)
HPLC (columun: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, follwed by 5 min-linear gradient MeOH-THF 7:3, and then MeOH-THF 7:3 for 5 min) b-carotene, echinenone, b-cryptoxanthin, 3-hydroxy-echinenone, cantaxanthin, 3'-hydroxy-echinenone, cis-adonixanthin, adonirubin, adonixanthin and astaxanthin were separated. tR = 6.30 min for astaxanthin (Ref. 0208).
Separation of (3S,3'S), (3S,3'R) and (3R,3'R) astaxanthin by HPLC on a Pirkle covalent L-leucine column (Ref. 1164).
Phaffia rhodozyma (Xanthophyllomyces dendrorhous) (yeast) (Ref. 0425)
Homarus gammarus (Lobster) (Ref. 0418)
Salmo salar, Oncorhynchus (salmon) (Ref. 0419)
Asterias rubens (starfish) (Ref. 0420)
Shrimps and lobsters (Ref. 0421)
Euphausia superba (antarctic krill) (Ref. 0422)
Asterina pectinifera, Asterias amurensis (starfish) (Ref. 0423)
Watasenia scintilans, Sepia modokai, Sepia officinales (cuttlefish) (Ref. 0424)
Octopus vulgaris, Octopus ocellatus, Octopus minor (octopus) (Ref. 0424)
The Wittig condensation of C10-dialdehyde with 2 equiv. of C15-phosphonium salt and subsequent thermal isomerization afforded astaxanthin.
(3S,3'S)- and (3R,3'R)-Astaxanthin --- Enantiomeric chiral blocks of C15-phosphonium salts were synthesized via three different routes. (Ref. 0012/0016)
(3S,3'S)- and (3R,3'R)-Astaxanthin --- C15-Phosphonium salts were prepared from enantiomeric 3-acetoxy-4-oxo-b-ionones obtained by separation of the corresponding diastereomeric camphanates and by microbial resolution. (Ref. 0015/0073)
Only Phaffia rhodozyma (Xanthophyllomyces dendrorhous) (yeast) synthesizes (3R,3'R)-astaxanthin, while other organisms, such as bacteria and green algae, synthesize (3S,3'S)-form (Ref. 0425).
b-Ionone, an end ring analog of b-carotene, inhibits astaxanthin synthesis from b-carotene in the Phaffia rhodozyma (Ref. 1267).

Almost the same stereochemical composition in astaxanthin, its monoester and its diester in krill are found: 62-71% (3R,3'R)-, 11-14% (3R,3'S; meso)- and 17-26% (3S,3'S)-astaxanthin (Ref. 0422). Those in Euphausia, Thysanoessa, Calanus, Acanthephyra and Cancer (Crustaceans) are also reported (Ref. 1257).
Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
18
meso-Astaxanthin/ (3R,3'S)-Astaxanthin
(3R,3'S)-3,3'-Dihydroxy-b,b-carotene-4,4'-dione
VCA0018
Masayoshi Ito
C40H52O4 596.838 Download ChemDraw structure file
Antioxidant activity (Ref. 0092/0093/0215)
Singlet oxygen quenching activity (Ref. 0088/0230/0441)
Immunomodulating action (Ref. 0213)
Chemoprevention of carcinogenesis (Ref. 0218/0219)
222-223degC (Ref. 0077)
lmax (nm) (e): CHCl3 300 (17634), 490 (116386) (Ref. 0010/0077); hexane 294 (16946), 471 (126163) (Ref. 0077); benzene 485 (112876) (Ref. 0077); ethanol 250 (14002), 297 (15578), 471 (116570) (Ref. 0077)
nmax(KBr)/cm-1: 3486m (OH), 1664s (conj. CO), 1607m, 1557s (C=C), 1399w, 1390m, 1366w (gem. Dimetyl), 1076s, 1039m (OH) and 969s (CH=CH, trans)
[Spectrum 0003] (Ref. 0010/0077)
1H-NMR d(500 MHz, CDCl3): 1.21 and 1.32 (each 6H, s, 1, 1'-gem-Me), 1.81 (2H, t, J 13, 2, 2'-Hax), 1.94 (6H, s, 5, 5'-Me), 1.98 and 2.00 (each 6H, s, 9, 9', 13, 13'-Me), 2.16 (2H, dd, J 6 and 13, 2, 2'-Heq), 3.67 (2H, d, J 2, 3, 3'-OH), 4.32 (2H, ddd, J 2, 6 and13, 3, 3'-H) and 6.20-6.70 (14H, m, olefinic-H) (Ref. 0068/0077)
m/z: 596 (M), (M-16), (M-16-16), (M-79), (M-92), (M-106), (M-92-16), (M-106-16), (M-154), (M-167), (M-207), (M-219), (M-233) (Ref. 0058/0077)
CD data in EPA solution (25degC): no optical activity (Ref. 0421)
TLC (Kieselgel 60 Merck, CH2Cl2-acetone-formic acid 95:5:3) Rf = 0.3 --- (3S,3'S)-astaxanthin (Ref. 0010)
HPLC (column: Sumipax OA-2000 (10mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 48:16:0.6, flow: 0.8 ml/min) tR = ca. 57 min (3R,3'R), ca. 60 min (meso), ca. 64 min (3S,3'S)
[Chromatogram 0004] (Ref. 0032/0069/0070/0210)
HPLC (column: LiChrosorb SI 60 (5 mm) 0.32times50 cm, eluent: hexane-ethyl acetate-acetonitrile 88:10:2, flow: 0.8 ml/min) tR = ca. 42 min (diacetate of all-E isomer)
[Chromatogram 0005] --- racemic astaxanthin (Ref. 0071)
HPLC (columun: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, follwed by 5 min-linear gradient MeOH-THF 7:3, and then MeOH-THF 7:3 for 5 min) b-carotene, echinenone, b-cryptoxanthin, 3-hydroxy-echinenone, cantaxanthin, 3'-hydroxy-echinenone, cis-adonixanthin, adonirubin, adonixanthin and astaxanthin were separated. tR = 6.30 min for astaxanthin (Ref. 0208).
Separation of (3S,3'S), (3S,3'R) and (3R,3'R) astaxanthin by HPLC on a Pirkle covalent L-leucine column (Ref. 1164).
Homarus gammarus (Lobster) (Ref. 0418)
Salmo salar, Oncorhynchus (salmon) (Ref. 0419)
Asterias rubens (starfish) (Ref. 0420)
Shrimps and lobsters (Ref. 0421)
Euphausia superba (antarctic krill) (Ref. 0422)
Asterina pectinifera, Asterias amurensis (starfish) (Ref. 0423)
Watasenia scintilans, Sepia modokai, Sepia officinales (cuttlefish) (Ref. 0424)
Octopus vulgaris, Octopus ocellatus, Octopus minor (octopus) (Ref. 0424)
The Wittig condensation of (R)-apoastaxanthinal (C25) with (S)-C15-phosphonium chloride in 1,2-epoxybutane provided meso-astaxanthin in 50-55% yield. (Ref. 0077)


Almost the same stereochemical composition in astaxanthin, its monoester and its diester in krill are found: 62-71% (3R,3'R)-, 11-14% (3R,3'S; meso)- and 17-26% (3S,3'S)-astaxanthin (Ref. 0422). Those in Euphausia, Thysanoessa, Calanus, Acanthephyra and Cancer (Crustaceans) are also reported (Ref. 1257).
Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
19
3,4-Didehydro-b-carotene
3,4-Didehydro-b,b-carotene
VCA0019
Masayoshi Ito
C40H58 538.889 Download ChemDraw structure file

186degC (Ref. 0087)
lmax (nm): petrol 461 (E 1%1cm = 2330) (Ref. 0087)





10-(2,6,6-Trimethylcyclohexen-1-yl)-4,8-dimethyl-4,6,8-decatrien-2-yn-3-ol was treated with ethyl magnesium bromide, and then reacted with the C19-dialdehyde to give the corresponding C40-acetylenic diol. Subsequent dehydration, Lindlar hydrogenation and isomerisation gave 3,4-detrahydro-b-carotene. (Ref. 0087)



20
3,4,3',4'-Bisdehydro-b-carotene/ Bisdehydro-b-carotene/ Tetradehydro-b-carotene
3,4,3',4'-Tetradehydro-b,b-carotene
VCA0020
Masayoshi Ito
C40H60 540.904 Download ChemDraw structure file

190-191degC (Ref. 0087)
lmax (nm): petrol 471 (E 1%1cm = 2400) (Ref. 0087)





The di-Grignard reagent of acetylene was reacted with 2 equivalents of the 3,4-dehydro-C19-aldehyde to give the corresponding C40-acetylenic diol, from which 3,4,3',4'-tetradehydro-b-carotene was obtained by dehydration, Lindlar hydrogenation, and isomerisation. (Ref. 0087)



21
Eschscholtzxanthin
(3S,3'S)-4',5',-Didehydro-4,5'-retro-b,b-carotene-3,3'-diol
VCA0021
Masayoshi Ito
C42H54O2 590.877 Download ChemDraw structure file
Antioxidative activity (Ref. 0460)
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
lmax (nm): petrol 446, 472, 502 (Ref. 0120); hexane 442, 472, 502 (Ref. 0119); acetone 445, 474, 504 (Ref. 0119)
nmax(KBr)/cm-1: 3400 (OH) (Ref. 0120)
1H-NMR d(300 MHz, CDCl3): 1.51 (dd, J 12 and 8, 2, 2'-ax-H), 1.81 (dd, J 12 and 5, 2, 2'-eq-H), 4.35 (m, 3, 3'-H), 5.75 (br s, 4,4'-H), 6.48 (d, J 12, 7,7'-H), 6.73 (d, J 12, 8,8'-H), 6.43 (d, J 15, 10,10'-H), 6.66 (dd, J 15 and 11, 11,11'-H), 6.23 (d, J 11, 12,12'-H), ca. 6.40 (m, 14,14'-H), ca. 6.41 (m, 15,15'-H), 1.25 (s, 16,16'-Me), 1.45 (s, 17,17'-Me), 1.97 (d, J 1.5, 18,18'-Me), 1.97 (s, 19,19'-Me), 1.97 (s, 20,20'-Me) (Ref. 0119/0125/0460)
13C-NMR d(75.4 MHz, CDCl3): 35.5 s (C1), 50.4 t (C2), 65.6 d (C3), 128.8 d (C4), 134.8 s (C5), 144.1 s (C6), 121.9 d (C7), 131.6 d (C8), 136.1 s (C9), 138.8 d (C10), 125.0 d (C11), 132.6 d (C12), 135.4 s (C13), 137.4 d (C14), 129.1 d (C15), 27.3 t (C16), 31.7 t (C17), 21.4 t (C18), 12.8 t (C19), 12.2 t (C20), 35.5 s (C1'), 50.4 t (C2'), 65.6 d (C3'), 128.8 d (C4'), 134.8 s (C5'), 144.1 s (C6'), 121.9 d (C7'), 131.6 d (C8'), 136.1 s (C9'), 138.8 d (C10'), 125.0 d (C11'), 132.6 d (C12'), 135.4 s (C13'), 137.4 d (C14'), 129.1 d (C15'), 27.3 t (C16'), 31.7 t (C17'), 21.4 t (C18'), 12.8 t (C19'), 12.2 t (C20') (Maoka Takashi)
m/z: 566 (M), 506 (M-56), 493 (M-79), 474 (M-92), 460 (M-106), 427 (M-139), and 412 (M-152) (Ref. 0119)
CD data in EPA solution
[Spectra 0020/0021] (Ref. 0119/0125) CD data in ether solution: De 213 (+10.3), 235 (0), 266 (24.7), 278(0), 307(-17.5), 382 (0), 367 (+13.0), 380(+20.2) (Ref. 0125)
HPLC (columun: YMC AL-313 (YMC Ltd., Kyoto) 0.6times25 cm, eluent and flow: 1.5 ml/min, MeOH for 10 min, then 10 min-linear gradient MeOH to EtOH) tR = ca. 8 min (Ref. 0125)
Buxus semperivirens (leaves) (Ref. 0125)
Eschscholtia californica (petals) (Ref. 0119/0461)
Taxus caspidata (berries) (Ref. 0460)
Treatment of the diacetate of (3R,3'R)-zeaxanthin with NBS, followed by dehydrobromination with morpholine gave eschscholtzxanthin diacetate, which was subsequently hydrolysed to give the free eschscholtzxanthin. (Ref. 0019)
in Buxus semperrivirens Eschscholtzxanthin a_right monoanhydroeschscholtzxanthin a_right anhydroeschscholtzxanthin (Ref. 0125)
in Taxus caspidata Eschscholtzxanthin a_right eschscholtzxanthone a_right rhodoxanthin(Ref. 0460)
in Eschscholtzia californica Zeaxanthin a_right antheraxanthin a_right eschscholtzxanthin (Ref. 0119)


22
Rhodoxanthin
4',5',-Didehydro-4,5'-retro-b,b-carotene-3,3'-dione
VCA0022
Masayoshi Ito
C40H50O2 562.824 Download ChemDraw structure file
Antioxidative activity (Ref. 0460), Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
208-209degC (Ref. 0122)
212-214degC (Ref. 0124)
194degC (Ref. 0121)
lmax (nm): hexane 505 (E 1%1cm = 2350) (Ref. 0122); CHCl3 493s (E 1%1cm = 2140), 511 (2420) and 533s (2030) (Ref. 0124); cyclohexane 472 (E 1%1cm = 2550), 443 (2530), 417 (1605) (Ref. 0121)
nmax(KBr)/cm-1: 1659s (conj. CO), 1576m, 1536m (conj. C=C), 992m, 978m (CH=CH, trans) (Ref. 0122/0124)
1H-NMR d(60 MHz, CDCl3)
[Spectrum 0022] (Ref. 0121)
1H-NMR d(400 MHz, CDCl3) all-trans:1.39 (s, 16,17,16',17'-Me), 2.00 (s, 20, 20'-Me), 2.03 (s, 19, 19'-Me), 2.16 (d J 1, 18,18'-Me), 2.39 (s, 2,2'-H2), 5.94 (brs, 4,4'-H), 6.26 (d, J 11.5, 12,12'-H), ca 6.43 (m, 14, 14', 15, 15'-H), 6.46 (d, J 15.5, 10,10'-H), 6.79 (dd, J 14.5, J 12, 11,11'-H), 6.80 (d, J 12.5, 8,8'-H), 6.90 (d, J 12.7, 7,7'-H). 6-cis: 1.25 (s, 16,17-Me), 1.39 (s, 16',17'-Me), 1.99 (s, 20'-Me), 1.993 (s, 20'-Me), 2.016 (s, 19-Me), 2.029 (s, 19'-Me), 2.304 (d, J 1.2, 18-Me), 2.16 (d, J 1, 18'-Me), 2.34 (s, 2-H2), 2.39 (s, 2'-H2), 5.94 (brs, 4,4'-H), 6.24 (d, J 11.5, 12-H), 6.26 (d, J 11.5, 12'-H), ca 6.43 (m, 14, 14', 15, 15'-H), 6.40 (d, J 14.5, 10-H), 6.46 (d, J 14.5, 10'-H), 6.74 (dd, J 15, J 11.5, 11,H), 6.78 (dd, 11'-H), 6.55 (d, J 12.2, 8'-H), 6.80 (d, J 12.3, 8'-H), 6.67 (d, J 12.2, 7'-H), 6.90 (d J 12.3, 7'-H). (Ref. 0474)
all-trans 13C-NMR d(100MHz, CDCl3): 12.41 (19), 12.91 (20), 22.31 (18), 29.87 (16, 17), 38.56 (1), 54.37 (2), 126.05 (4), 129.93 (11), 128.15 (7), 128.32 (8), 129.85 (15), 132.56 (12), 137.51 (13), 137.68 (14), 138.04 (10), 141.32 (9), 142.70 (6), 154.74 (5), 198.95 (3) (Ref. 0474)
6,6'-dicis 13C-NMR d(100MHz, CDCl3): 12.42 (19), 12.88 (20), 25.42 (18), 28.30 (16, 17), 41.26 (1), 52.50 (2), 125.48 (4), 126.40 (11), 128.79 and 128.83 (4) and (8),129.60 (15), 132.47 (12), 137.87, 137.54 and 137.05 (10), (13) and (14), 139.58 (9), 143.83 (6), 155.46 (5), 198.99 (3) (Ref. 0474)
m/z: 562 (M), 506 (M-56), 470 (M-92), 456 (M-106) (Ref. 0059/0122)

TLC (Kieselgel, CH2Cl2-ether 9:1) Rf = 0.33 (Ref. 0124)
HPLC (column: Spherisorb S 5-CN, eluent: n-hexane-isopropyl acetate-acetone (76:17:7), flow rate: 1ml/min (Ref. 0474)
Taxus baccata (berries) (Ref. 0462)
Taxus caspidata (berries) (Ref. 0460)
Ricinus communis (cell cultures) (Ref. 0463)
Aloe vera (leaves) (Ref. 0464)
Cryptomeria japonica (leaves) (Ref. 0465)
Metasequoia glyptostroboides (leaves) (Ref. 0465)
Tilapia nilotica (integuments) (Ref. 0466/0417)
Rhodoxanthin was synthesized by the Wittig condensation of the C12-dialdehyde with 2 equiv. of the 3-oxo-retro-dehydro-C14-phosphorane, which was prepared in several steps starting from 6-oxoisophorone via 3-oxo-retro-dehydro-C11-aldehyde. (Ref. 0122)
The Wittig condensation of the 2 equiv. of 5-(4,4-ethylenedioxy-2,6,6-trimethyl-1-cyclohexen-1-yl)-3-methyl-2,4-pentadienal (C15) or 5-(2,6,6-trimethyl-4-ethoxy1,3-cyclohexadien-1-yl)-3-methyl-2,4-pentadienal (C15) with 2,7-dimethyl-2,4,6-octatrienylene-bis-(triphenylphosphonium bromide), followed by hydrolysis with acid provided rhodoxanthin. (Ref. 0121)
The key intermediate for the synthesis of rhodoxanthin, [3-methyl-5-(2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-2,4-pentadienyl]triphenylphosphonium bromide was synthesized starting from 6-oxo-isophorone via 3-oxo-cyclocitral and 3-oxo-ionone derivatives. (Ref. 0123)
The key intermediate for the synthesis of rhodoxanthin, [3-methyl-5-(2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-2,4-pentadienyl]triphenylphosphonium bromide was synthesized via the reaction of 6-oxo-isophorone with the protected (E)-methylpent-2-en-4-yn-1-ol, simultaneous elimination of the tertiary hydroxy group and the partial reduction of the triple bond with Zn/acetic acid. This phosphonium salt was reacted with the C10-dialdehyde to give 6,6'-dihydrorhodoxanthin which was dehydrogenatede to provide rhodoxanthin. (Ref. 0019/0124)
Taxus caspidata (tree) Eschscholtzxanthin a_right eschscholtzxanthone a_right rhodoxanthin(Ref. 0460)
Tilapia nilotica (fish) Zeaxanthin a_right rhodoxanthin <0467>>


23
Anhydroeschscholtzxanthin
2,3,2',3',4',5'-Hexadehydro-4,5'-retro-b,b-carotene
VCA0023
Masayoshi Ito
C40H50 530.825 Download ChemDraw structure file

196degC (Ref. 0126)
lmax (nm): CS2 578, 539, 503 (Ref. 0126); diethylether 500, 530 (Ref. 0125)
nmax(KBr)/cm-1: 3030 (CH3), 2961 (CH3), 2920 (CH3), 1454 (CH3), 974 (olefin), 952 (olefin), 738 (Ref. 0125)
1H-NMR d(300 MHz, CDCl3): 5.49 (d, J 9.5, 2, 2'-H), ca. 5.79 (dm, J 9.5, 3,3'-H), 5.79 (m, 4,4'-H), 6.60 (d, J 13, 7,7'-H), 6.87 (d, J 13, 8,8'-H), 6.45 (d, J 15, 10,10'-H), 6.64 (dd, J 15 and 11, 11,11'-H), 6.25 (d, J 11, 12,12'-H), ca. 6.40 (m, 14,14'-H), ca. 6.41 (m, 15,15'-H), 1.39 (s, 16,16'-Me), 1.39 (s, 17,17'-Me), 1.97 (s, 18,18'-Me), 1.97 (s, 19,19'-Me), 1.97 (s, 20,20'-Me) (Ref. 0125)
13C-NMR d(75.4 MHz, CDCl3): 38.5 s (C1), 140.9 d (C2), 118.3 d (C3), 123.2 d (C4), 133.5 s (C5), 145.9 s (C6), 123.5 d (C7), 130.3 d (C8), 136.2 s (C9), 138.8 d (C10), 124.6 d (C11), 132.8 d (C12), 135.8 s (C13), 137.4 d (C14), 129.0 d (C15), 29.8 t (C16), 29.8 t (C17), 21.0 t (C18), 12.8 t (C19), 12.0 t (C20), 38.5 s (C1'), 140.9 d (C2'), 118.3 d (C3'), 123.2 d (C4'), 133.5 s (C5'), 145.9 s (C6'), 123.5 d (C7'), 130.3 d (C8'), 136.2 s (C9'), 138.8 d (C10'), 124.6 d (C11'), 132.8 d (C12'), 135.8 s (C13'), 137.4 d (C14'), 129.0 d (C15'), 29.8 t (C16'), 29.8 t (C17'), 21.0 t (C18'), 12.8 t (C19'), 12.0 t (C20') (Maoka Takashi)


HPLC (columun: YMC AL-313 (YMC Ltd., Kyoto) 0.6times25 cm, eluent and flow: 1.5 ml/min, MeOH for 10 min, then 10 min-linear gradient MeOH to EtOH) tR = ca. 24 min (Ref. 0125)
Buxus semperivirens (leaves) (Ref. 0125/0468)
Partial synthesis of anhydroeschschlotzxanthin by dehydration of eschschlotzxanthin was discribed. (Ref. 0126)
in Buxus semperrivirens Eschscholtzxanthin a_right monoanhydroeschscholtzxanthin a_right anhydroeschscholtzxanthin (Ref. 0125)

Anhydroescholtzxanthin should be anhydroeschscholtzxanthin due to mistake.
24
Monoanhydroeschscholtzxanthin
(3S)-2',3',4',5'-Tetradehydro-4,5'-retro-b,b-caroten-3-ol
VCA0024
Masayoshi Ito
C40H52O 548.840 Download ChemDraw structure file

lmax (nm): diethylether 458, 482, 515 (Ref. 0125)
1H-NMR d(300 MHz, CDCl3): 1.51 (dd, J 12 and 8, 2-ax-H), 1.81 (dd, J 12 and 5, 2-eq-H), 4.35 (m, 3-H), 5.75 (br s, 4-H), 6.48 (d, J 12, 7-H), 6.73 (d, J 12, 8-H), 6.43 (d, J 15, 10-H), 6.66 (dd, J 15 and 11, 11-H), 6.23 (d, J 11, 12-H), ca. 6.40 (m, 14-H), ca. 6.41 (m, 15-H), 1.25 (s, 16-Me), 1.45 (s, 17-Me), 1.95 (d, J 1.5, 18-Me), 1.97 (s, 19-Me), 1.97 (s, 20-Me), 5.49 (d, J 9.5, 2'-H), ca. 5.79 (dm, J 9.5, 3'-H), ca. 5.79 (m, 4'-H), 6.60 (d, J 13, 7'-H), 6.87 (d, J 13, 8'-H), 6.45 (d, J 15, 10'-H), 6.64 (dd, J 15 and 11, 11'-H), 6.25 (d, J 11, 12'-H), ca. 6.40 (m, 14'-H), ca. 6.41 (m, 15'-H), 1.39 (s, 16'-Me), 1.39 (s, 17'-Me), 1.97 (s, 18'-Me), 1.97 (s, 19'-Me), 1.97 (s, 20'-Me) (Ref. 0125)
13C-NMR d(75.4 MHz, CDCl3): 35.5 s (C1), 50.4 t (C2), 65.6 d (C3), 128.8 d (C4), 134.8 s (C5), 144.1 s (C6), 121.9 d (C7), 131.6 d (C8), 136.1 s (C9), 138.8 d (C10), 125.0 d (C11), 132.6 d (C12), 135.4 s (C13), 137.4 d (C14), 129.1 d (C15), 27.3 t (C16), 31.7 t (C17), 21.4 t (C18), 12.8 t (C19), 12.2 t (C20), 38.5 s (C1'), 140.9 d (C2'), 118.3 d (C3'), 123.2 d (C4'), 133.5 s (C5'), 145.9 s (C6'), 123.5 d (C7'), 130.3 d (C8'), 136.1 s (C9'), 138.8 d (C10'), 124.5 d (C11'), 132.6 d (C12'), 135.7 s (C13'), 137.4 d (C14'), 129.0 d (C15'), 29.8 t (C16'), 29.8 t (C17'), 21.0 t (C18'), 12.8 t (C19'), 12.1 t (C20') (Maoka Takashi)
m/z: 548.4046 (M, C40H52O), 530 (M-18) (Ref. 0125)
CD data in EPA solution
[Spectrum 0021] De 222 (+4.9), 248 (0), 281 (+2.9), 292 (0), 308 (0), 328 (-5,0), 345 (0), 382 (+4.6) (Ref. 0125)
HPLC (columun: YMC AL-313 (YMC Ltd., Kyoto) 0.6times25 cm, eluent and flow: 1.5 ml/min, MeOH for 10 min, then 10 min-linear gradient MeOH to EtOH) tR = ca. 16 min (Ref. 0125)
Buxus semperivirens (leaves) (Ref. 0125)
Partial synthesis of monoanhydroeschschlotzxanthin by dehydration of eschschlotzxanthin with dry hydrogen chloride in chloroform was discribed. (Ref. 0125)


Monoanhydroescholtzxanthin should be monoanhydroeschscholtzxanthin due to mistake.
25
Fritschiellaxanthin/ (3S,3'R,6'R)-4-Ketolutein
(3S,3'R,6'R)-3,3'-Dihydroxy-b,e-caroten-4-one
VCA0025
Masayoshi Ito
C40H54O3 582.855 Download ChemDraw structure file

178-180degC (Ref. 0113)
lmax (nm): petrol 420, 443, 472 (Ref. 0113); hexane 458, 469 (Ref. 0117)
nmax(KBr)/cm-1: 3390 (OH), 2930, 2870 (CH), 1660 (conj. CO), 1555 (conj. C=C), 1440 (CH2), 1382, 1360 (CH3, gem. CH3), 985, 965 (trans disubst. C=C), 882, 828 (trans trisubst. C=C) (Ref. 0113)
1H-NMR d(80 MHz, CDCl3) 0.85, 0.99 (each 3H, s, 16', 17'-Me), 1.21, 1.32 (each 3H, s, 16,17-Me), 1.62 (3H, s, 18'-Me), 1.91 (3H, s, 19'-Me), 1.94 (3H, s, 18-Me), 1.97 (9H, s, 19,20,20'-Me),4.24 (1H, m, 3'-H), 4.32 (1H, m, 3-H), 5.33 (1H, dd, H-7'), 5.48 (1H, br s, H-4'), 6.1-6.7 (13H, olefinic H)
[Spectrum 0023] (Ref. 0113)
m/z: 582 (M, 35%), 564 (M-18, 100%), 546 (M-18-18, 10%), 490 (M-92, 5%), 476 (M-106, 3%), 472 (M-92-18, 1%), 458 (M-106-18, 1%) (Ref. 0113)
CD data in EPA solution
[Spectrum 0024] (Ref. 0113)
CD data in EPA solution (20degC): De 235 (+3.0), 257 (+15.8), 272 (0), 294 (-8.0), 320 (-2.0), 354 (-6) (Ref. 0117)
TLC (Kieselguhr paper; acetone-petrol 10:90) Rf = 0.5 (Ref. 0113)
HPLC (column: Sumipax OA-2000 (10mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 48:16:0.6, flow: 0.8 ml/min) tR = ca. 46 min
[Chromatogram 0004] (Ref. 0070)
Fritschiella tuberosa (Ref. 0116)
Sesarma haematocheir (Ref. 0113)
Paralithodes brevipes (Ref. 0469)
Potamon dehaani (Ref. 0451>

Paralithodes brevipes: Lutein a_right fritschiellaxanthin a_right papilioerythrinone (Ref. 0469)
Potamon dehaani: Lutein a_right fritschiellaxanthin a_right papilioerythrinone (Ref. 0451>


26
a-Doradexanthin/ (3S,3'S,6'R)-4-Ketolutein
(3S,3'S,6'R)-3,3'-Dihydroxy-b,e-caroten-4-one
VCA0026
Masayoshi Ito
C40H54O3 582.855 Download ChemDraw structure file

lmax (nm): ether 453, 469 for a-doradexanthin-ester (Ref. 0116/0132)
1H-NMR d(300 MHz, CDCl3) 0.85, 0.94 (each 3H, s, 16',17'-Me), 1.21, 1.32 (each 3H, s, 16,17-Me), 1.64 (3H, s, 18'-Me), 1.91 (6H, s,19'-Me), 1.94 (3H, s, 18-Me), 1.97 (9H, s, 19,20,20'-Me), 2.39 (1H, dd, H-2eq), 2.16 (1H, d, H-6'), 4.23 (1H, m, 3'-H), 4.32 (1H, m, 3-H), 5.53 (1H, dd, H-7'), 5.49 (1H, br s, H-4'), 6.1-6.7 (13H, olefinic H), 6.1-6.7 (13H, olefinic H) (Maoka Takashi)

CD data in ether solution: a-doradexanthin0ester De 227 (0), 243 (-), 250 (0), 273 (+), 313 (-), 340 (-) (Ref. 0454)
TLC (Kieselguhr paper; acetone-petrol 10:90) Rf = 0.4 (Ref. 0113)
HPLC (column: Sumipax OA-2000 (10mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 48:16:0.6, flow: 0.8 ml/min) tR = ca. 50 min
[Chromatogram 0004] (Ref. 0070)
Carassius auratus (integuments) (Ref. 0116/0415/0470)

Carassius auratus: Lutein a_right 3'-epilutein a_right a-doradexanthin (Ref. 0415)


27
6'-Epilutein/ Lutein F
(3R,3'R,6'S)-b,e-Carotene-3,3'-diol
VCA0027
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): petrol 420, 444, 472 (Ref. 0408)
1-NMR d (300MHz, CDCl3): 0.85 (3H, s, 16'-H), 0.94 (3H, s, H-17'), 1.07 (6H, s, H-16,17), 1.39 (1H, dd, H-2'ax), 1.48 (1H, dd, H-2ax), 1.64 (3H, s, H-18'), 1.65 (1H, dd, H-2'eq), 1.74 (3H, s, H-18), 1.91 (3H, s, H-19'), 1.97 (9H, s, H-19,20,20'), 2.04 (1H, dd, H-4ax), 2.39 (1H, dd, H-4eq), 2.16 (1H, d, H-6'), 4.00 (1H, m, H-3), 4.23 (1H, m, H-3'), 5.48 (1H, br s, H-4'), 5.53 (1H, dd, H-7'), 6.1-6.7 (13H, olefinic H) (Ref. 0452)
m/z: 568 (M), 550 (M-18), 532 (M-18-18) (Ref. 0408)
CD data in EPA solution: De 225 (-4.5), 240 (-6.8), 250 (-5.5), 272 (-10.0), 315 (-2.5), 332 (-4.5), 370 (-1.0)
[Spectrum 0025] (Ref. 0452)

Branchiostegus japonicus japonicus (integuments) (Ref. 0452)
Inimicus japonicus (integuments) (Ref. 0452)
Platycephalus indicus (integuments) (Ref. 0452)
Lagocephalus lunaris spadiceus (integuments) (Ref. 0452)
Fugus vermiculare vermiculare (integuments) (Ref. 0452)
Seriola quinqueradiata (integuments) (Ref. 0452)
Pagrus major (integuments) (Ref. 0452)
Coryphaena hippurus (integuments) (Ref. 0452)
Eggs of Coryphaena hippurus (dolphin-fish) and Prognichthys agoo (flying fish) (Ref. 0408)
Partial synthesis of lutein F by reduction of (3R,6'RS)-3-hydroxy-b,e-caroten-3'-one with NaBH4 in methanol was discribed. (Ref. 0452)



28
3'-Epilutein/ Lutein B/ (Calthaxanthin)
(3R,3'S,6'R)-b,e-Carotene-3,3'-diol
VCA0028
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

151-152degC (Ref. 0116)
162-163degC (Ref. 0127)
lmax (nm): ether 419, 443, 473 (Ref. 0401); hexane (e) 268 (13800), 428 (77500), 444 (116400), 472 (105500) (Ref. 0119); hexane (e) 421 (90000), 444 (133000), 473 (127000) (Ref. 0127)
1H-NMR d(270 MHz, CDCl3): 0.854, 0.944 (each 3H, s, 1'-gem-Me), 1.074 (6H, s, 1-gem-Me), 1.32 (d, J ca. 7), ca. 1.34 (OH), 1.477 (1H, t, J ca.12, 2b-H), 1.645 (3H, s, 5'-Me), 1.738 (3H, s, 5-Me), 1.907 (3H, s, 9'-Me), 1.968 (9H, s, 9-, 13-, 13'-Me), 2.05 (1H, dd, J ca. 17, 9.5, 4b-H), 2.16 (1H, d, J ca. 9.5, 6'-H), 2.39 (1H, dd, J ca. 17, 6, 4a-H), ca. 4.00 (1H, m, 3-H), 4.23 (1H, m, 3'-H), 5.49 (1H, s, 4'-H), 5.53 (1H, dd, J 15.5, 9.5, 7'-H), ca. 6.12 (2H, s, 7-, 8-H), 6.13 (1H, d, 8'-H), ca. 6.13 and ca. 6.16 (2H, 10-, 10'-H), 6.25 (2H, m, 14-, 14'-H), 6.35 and 6.36 ( each 1H, d, J ca. 15, 12-, 12'-H), 6.15-6.61 (4H, m, 11-, 11'-, 15-, 15'-H) (Ref. 0128/0116/0127)
m/z: 568 (M), 550 (M-18), 532 (M-18-18) (Ref. 0401/0116/0127)
CD data (ether-hexane 1:4): De 228 (0), 241 (+8.9), 264 (0), 288 (-5.8), 302 (0), 330 (+3.1)
[Spectrum 0026] (Ref. 0408)
TLC (Mg2(OH)2CO3 plates, acetone-petrol 15:85) Rf=0.65 (Ref. 0401)
HPLC (column: Spherisorb 5S, eluent: hexane-CH2Cl2-2-Propanol-NEt(iso-Pr)2 90.9:6.5:2.5:0.1)
[Chromatogram 0016] (Ref. 0128)
Caltha palustris (petals) (Ref. 0127/0453), Rosa gallica (petals) (Ref. 0450)
Carassius auratus (integuments) (Ref. 0415/0470)
Integuments of several fishes (Ref. 0455)

Carassius auratus: Lutein a_right 3'-epilutein a_right a-doradexanthin (Ref. 0470)


29
3',6'-Diepilutein/ Lutein D
(3R,3'S,6'S)-b,e-Carotene-3,3'-diol
VCA0029
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

154-155degC (Ref. 0452)
lmax (nm): petrol 420, 444, 472 (Ref. 0408)
same as Lutein A 1H-NMR d(270 MHz, CDCl3): 0.849, 0.998 (6H, s, 1'-gem-Me), 1.074 (6H, s, 1-gem-Me), 1.37 (1H, dd, J 13, 7, 2'ax-H), 1.48 (1H, t, J 12, 2ax-H), 1.626 (3H, s, 5'-Me), 1.739 (3H, s, 5-Me), 1.84 (1H, dd, J 13, 6, 2'eq-H), 1.912 (3H, s, 9'-Me), 1.970 (9H, s, 9-, 13-, 13'-Me), 2.04 (1H, dd, J 17, 10, 4ax-H), ca. 2.33-2.45 (2H, m, 6'-, 4eq-H), ca. 4.0 (1H, m, 3-H), 4.25 (1H, 3'-H), 5.43 (1H, dd, J 15.5, 10, 7'-H), 5.55 (1H, s, 4'-H), ca. 6.12 (2H, s, 7-, 8-H), ca. 6.15 (3H, m, 8'-, 10-, 10'-H), ca. 6.26 (2H, m, 14-, 14'-H), 6.36 (2H, d, J 15, 12-, 12'-H), ca. 6.55-6.71 (4H, m, 11-, 11'-, 15-, 15'-H) (Ref. 0086/0128/0452)
m/z: 568 (M), 550 (M-18), 532 (M-18-18) (Ref. 0408)
CD data in EPA solution: De 215 (-11.0), 220 (-13.0), 233 (0), 236 (+1.2), 256 (-13.0), 310 (0), 325 (+1.0), 380 (0)
[Spectrum 0027] (Ref. 0452)

Branchiostegus japonicus japonicus (integuments) (Ref. 0452)
Inimicus japonicus (integuments) (Ref. 0452)
Platycephalus indicus (integuments) (Ref. 0452)
Lagocephalus lunaris spadiceus (integuments) (Ref. 0452)
Fugus vermiculare vermiculare (integuments) (Ref. 0452)
Seriola quinqueradiata (integuments) (Ref. 0452)
Pagrus major (integuments) (Ref. 0452)
Coryphaena hippurus (integuments) (Ref. 0452)
Eggs of Coryphaena hippurus (dolphin-fish) (Ref. 0408)
Partial synthesis of lutein D by reduction of (3R,6'RS)-3-hydroxy-b,e-caroten-3'-one with NaBH4 in methanol was discribed. (Ref. 0452)



30
Lactucaxanthin/ Tunaxanthin F
(3R,6R,3'R,6'R)-e,e-Carotene-3,3'-diol
VCA0030
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
Substantial amount of lactucaxanthin is found in photosystem II (LHC II) of Lactuca sativa (lettuce): LHC IIa (CP29), LHCP IIb and LHCP IIc (CP26) (Ref. 1149).
lmax (nm): petrol 414, 437, 467 (Ref. 0115); acetone 426, 440, 471 (Ref. 0129); ethanol 424, 438.5, 468 (Ref. 0129); ether 268, 418, 439 (Maoka Takashi)
1H-NMR d(100 MHz, CDCl3): 0.85 (6H, s), 1.00 (6H, s), 1.62 (6H, s), 1.91 (6H, s), 1.96 (6H, s), ca. 5.4 (2H, m), 6.04-6.65 (ca 14H) (Ref. 0129)
1H-NMR d(300 MHz, CDCl3): 0.85, 0.10 (each 6H, s, 16,16',17,17'-Me), 1.37 (2H, dd, 2,2'a-H), 1.63 (6H, s, 18,18'-Me), 1.85(2H, dd, 2, 2'b-H), 1.91 (6H, s, 19,19'-Me), 1.97 (6H, s, 20,20'-Me), 2.41 (2H, d, 6,6'-H), 4.25 (2H, m 3,3'-H), 5.42 (2H, dd, 7,7'-H), 5.55 (2H, br s, 4,4'-H), 6.1-6.7 (12H, olefinic H) (Maoka Takashi)
m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)
CD data in EPA solution
[Spectrum 0030] (Ref. 0115)
CD data in EPA solution: De 215 (+4), 230 (+7), 264 (+17.5), 290 (+1.5), 325 (+2.5), 390 (0) (Ref. 0129)
HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatogram 0015] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
Lactuca sativa (Ref. 0129)
Tilapia nilotica (integuments) (Ref. 0115)

Usually the substrate of lycopen e-cyclase is only lycopene and d-carotene and g-carotene are not, while lycopene e-cyclase from Lactuca sativa (romaine lettuce) can cyclize d-carotene to form e-carotene and the final product is lactucaxanthin. A single amino acid is found to act as a molecular switch: one e-ring or two (Ref. 1148).

Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
31
Tunaxanthin H
(3R,6R,3'R,6'S)-e,e-Carotene-3,3'-diol
VCA0031
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): ether 268, 418, 439 (Maoka Takashi)

m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)

HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatogram 0015] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
Cyprinus carpio (integuments) (Ref. 0456)




32
Tunaxanthin I/ Chiriquixanthin A
(3R,6R,3'S,6'R)-e,e-Carotene-3,3'-diol
VCA0032
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): acetone 417, 441, 470 (Ref. 0131); ether 268, 418, 439 (Maoka Takashi)
1H-NMR d(100 MHz, CDCl3): 0.84 (6H, s 1,1'-Me), 0.94 (3H, s 1'-Me), 0.99 (3H, s 1-Me), 1.63 (6H, s, 5,5'-Me), 1.91 (6H, s, 9,9'-Me), 1.97 (6H, s, 13,13'-Me) (Ref. 0131/0133)
m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)
CD cotton effect: De 268 nm (+15.0) (Ref. 0133)
HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatogram 0015] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
Atelopus chiriquiensis (skins) (Ref. 0131)




33
Tunaxanthin E
(3R,6R,3'S,6'S)-e,e-Carotene-3,3'-diol
VCA0033
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): ether 268, 418, 439 (Maoka Takashi)

m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)

HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatogram 0015] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
Chaenogobius isaza (integuments) (Ref. 0457)




34
Tunaxanthin C/ Oxyxantin 58/ (ent. Chiriquixanthin B)
(3R,6S,3'R,6'S)-e,e-Carotene-3,3'-diol
VCA0034
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): petrol 414, 437, 467 (Ref. 0114); ether 268, 418, 439 (Maoka Takashi)
1H-NMR d(100 MHz, CDCl3): 0.84, 0.94 (each 6H, s 1,1'-Me), 1.63 (6H, s, 5,5'-Me), 1.91 (6H, s, 9,9'-Me), 1.97 (6H, s, 13,13'-Me) (Ref. 0131/0133)
1H-NMR d(300 MHz, CDCl3): 0.85, 0.94 (each 6H, s, 16,16',17,17'-Me), 1.39 (2H, dd, 2,2'a-H),1.63 (6H, s, 18,18'-Me), 1.65 (2H, dd, 2,2'b-H), 1.91 (6H, s, 19,19'-Me), 1.97 (6H, s, 20,20'-Me), 2.16 (2H, d, 6,6'-H), 4.23 (2H, m, 3,3'-H), 5,49 (2H, brs, H-4,4'), 5.53 (2H, dd, 7,7'-H), 6.1-6.7 (12H, olefinic H) (Maoka Takashi)
m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)
CD data in EPA solution
[Spectrum 0029] De 268 nm (-18.0) (Ref. 0114)
CD cotton effect: De 268 nm (-14.0) (Ref. 0133)
HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatograms 0015)] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0019] (Ref. 0111)
HPLC (column: Zorbax CN 0.4times25 cm, eluent: hexane-CH2Cl2-NEt(iso-Pr)2 90:10:0.1, flow: 4.0 ml/min)
[Chromatogram 0020] (Ref. 0112)
Sebastes flavidus (integuments) (Ref. 0111/0112)
Oxyjulis californica (integuments) (Ref. 0133)
Sebastes inermis (integuments), Seriola quinqueradiata (integuments), Prognichthys agoo (integuments), Stephanolepis cirrhifer (integuments), Coryphaena hippurus (integuments) (Ref. 0112)
integuments of several fishes (Ref. 0458)

Marine fish egg (Prognichthys aggo, Seriola quinqueradiata): astaxanthin a_right idoxanthin a_right b,b-carotene-3,4,3'-triol a_right zeaxanthin a_right 3-hydroxy-b,e-caroten-3'-one a_right e,e-carotene-3,3'-dione a_right 3-hydroxy-e,e-caroten-3'-dione a_right tunaxanthin A, B and C (Ref. 0408)

Yellowtail (Seriola quinqueradiata): astaxanthin a_right b-carotene-triol a_right zeaxanthin a_right 3'-epilutein a_right tunaxanthin A, B and C (Ref. 0430/0435)
Red sea bream (Pagrus major): astaxanthin a_right b-carotene-triol a_right zeaxanthin a_right 3'-epilutein a_right tunaxanthin A, B, and C (Ref. 0432)

Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
35
Tunaxanthin D
(3R,6S,3'S,6'R)-e,e-Carotene-3,3'-diol
VCA0035
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): petrol 418, 439, 468 (Ref. 0112); ether 268, 418, 439 (Maoka Takashi)
1H-NMR d(300 MHz, CDCl3): 0.85, 0.94 (each 6H, s, 16,16',17,17'-Me), 1.39 (2H, dd, 2,2'a-H),1.63 (6H, s, 18,18'-Me), 1.65 (2H, dd, 2,2'b-H), 1.91 (6H, s, 19,19'-Me), 1.97 (6H, s, 20,20'-Me), 2.16 (2H, d, 6,6'-H), 4.23 (2H, m, 3,3'-H), 5,49 (2H, br s, 4,4'-H), 5.53 (2H, dd, 7,7'-H), 6.1-6.7 (12H, olefinic H) (Maoka Takashi)
m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)
CD spectrum: no optical activity (Ref. 0112)
HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatogram 0015] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0019] (Ref. 0111)
HPLC (column: Zorbax CN 0.4times25 cm, eluent: hexane-CH2Cl2-NEt(iso-Pr)2 90:10:0.1, flow: 4.0 ml/min)
[Chromatogram 0020] (Ref. 0112)
Sebastes inermis (integuments), Seriola quinqueradiata (integuments), Prognichthys agoo (integuments), Stephanolepis cirrhifer (integuments), Coryphaena hippurus (integuments) (Ref. 0112)



Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
36
Tunaxanthin J/ Chiriquixanthin B
(3S,6R,3'S,6'R)-e,e-Carotene-3,3'-diol
VCA0036
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): acetone 417, 441, 470 (Ref. 0131); ether 268, 418, 439 (Maoka Takashi)
1H-NMR d(100 MHz, CDCl3): 0.84, 0.94 (each 6H, s 1,1'-Me), 1.63 (6H, s, 5,5'-Me), 1.91 (6H, s, 9,9'-Me), 1.97 (6H, s, 13,13'-Me) (Ref. 0131/0133)
1H-NMR d(300 MHz, CDCl3): 0.85, 0.94 (each 6H, s, 16,16',17,17'-Me), 1.39 (2H, dd, 2,2'a-H),1.63 (6H, s, 18,18'-Me), 1.65(2H, dd, 2,2'b-H), 1.91 (6H, s, 19,19'-Me), 1.97 (6H, s, 20,20'-Me), 2.16 (2H, d, 6,6'-H), 4.23 (2H, m, 3,3'-H), 5,49 (2H, br s, 4,4'-H), 5.53 (2H, dd, 7,7'-H), 6.1-6.7 (12H, olefinic H) (Maoka Takashi)
m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)
CD cotton effect: De 268 nm (+9.5) (Ref. 0133)
CD cotton effect: De 268nm (+20) (Ref. 0111)
HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatogram 0015] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0019] (Ref. 0111)
Atelopus chiriquiensis (skins) (Ref. 0131)
Sebastes flavidus (integuments) (Ref. 0111/0133)



Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
37
Tunaxanthin B/ Oxyxanthin 51
(3R,6S,3'S,6'S)-e,e-Carotene-3,3'-diol
VCA0037
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): ether 268, 418, 439 (Maoka Takashi)
1H-NMR d(100 MHz, CDCl3): 0.84 (6H, s 1,1'-Me), 0.94 (3H, s 1'-Me), 0.99 (3H, s 1-Me), 1.63 (6H, s, 5,5'-Me), 1.91 (6H, s, 9,9'-Me), 1.97 (6H, s, 13,13'-Me) (Ref. 0133/0459)
1H-NMR d(300 MHz, CDCl3): 0.85 (6H, s 16, 16'-Me), 0.94, 0.10 (each 3H, s, 17,17'-Me), 1.37 (1H, dd, 2'a-H), 1.39 (1H, dd, 2a-H),1.63 (6H, s, 18,18'-Me), 1.65(1H, dd 2b-H), 1.85 (2H, dd, 2'b-H), 1.91 (6H, s, 19,19'-Me), 1.97 (6H, s, 20,20'-Me), 2.16 (1H, d, 6-H), 2.41 (1H, d, 6'-H), 4.23 (1H, m, 3-H), 4.25 (1H, m,3'-H), 5.42 (1H, dd, 7'-H), 5,49 (1H, br.s, 4-H), 5.53 (1H, dd, 7-H), 5.55 (1H, br s, 4'-H), 6.1-6.7 (12H, olefinic H) (Maoka Takashi)
m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)
CD cotton effect: De 268 nm (-14.0) (Ref. 0133)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
HPLC (column: Zorbax CN 0.4times25 cm, eluent: hexane-CH2Cl2-NEt(iso-Pr)2 90:10:0.1, flow: 4.0 ml/min)
[Chromatogram 0020] (Ref. 0112)
Sebastes inermis (integuments), Seriola quinqueradiata (integuments), Prognichthys agoo (integuments), Stephanolepis cirrhifer (integuments), Coryphaena hippurus (integuments) (Ref. 0112)
Oxyjulis californica (integuments) (Ref. 0133)
Thunnus thynnus (integuments), Amanses modestus (integuments) (Ref. 0459)
integuments of several fishes (Ref. 0458)

marine fish egg (Prognichthys aggo, Seriola quinqueradiata): astaxanthin a_right idoxanthin a_right b,b-carotene-3,4,3'-triol a_right zeaxanthin a_right 3-hydroxy-b,e-caroten-3'-one a_right e,e-carotene-3,3'-dione a_right 3-hydroxy-e,e-caroten-3'-dione a_right tunaxanthin A, B and C (Ref. 0408)
Yellowtail (Seriola quinqueradiata): astaxanthin a_right b-carotene-triol a_right zeaxanthin a_right 3'-epilutein a_right tunaxanthin A, B and C (Ref. 0430/0435)

Red sea bream (Pagrus major): astaxanthin a_right b-carotene-triol a_right zeaxanthin a_right 3'-epilutein a_right tunaxanthin A, B, and C (Ref. 0432)


38
Tunaxanthin G
(3S,6R,3'S,6'S)-e,e-Carotene-3,3'-diol
VCA0038
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): ether 268, 418, 439 (Maoka Takashi)

m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)

HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatogram 0015] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
Cyprinus carpio (integuments) (Ref. 0456)




39
Tunaxanthin A/ Oxyxanthin 45/ (ent. Lactucaxanthin)
(3S,6S,3'S,6'S)-e,e-Carotene-3,3'-diol
VCA0039
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): petrol 414, 437, 467 (Ref. 0115); ether 268, 418, 439 (Maoka Takashi)
1H-NMR d(100 MHz, CDCl3): 0.84, 0.99 (each 6H, s 1,1'-Me), 1.63 (6H, s, 5,5'-Me), 1.91 (6H, s, 9,9'-Me), 1.97 (6H, s, 13,13'-Me) (Ref. 0133)
1H-NMR d(300 MHz, CDCl3): 0.85, 0.10 (each 6H, s, 16,16',17,17'-Me), 1.37 (2H, d, 2,2'a-H), 1.63 (6H, s, 18,18'-Me), 1.85(2H, d, 2,2'b-H), 1.91 (6H, s, 19,19'-Me), 1.97 (6H, s, 20,20'-Me), 2.41 (2H, d, 6,6'-H), 4.25 (2H, m 3,3'-H), 5.42 (2H, d, 7,7'-H), 5.55 (2H, br s, 4,4'-H), 6.1-6.7 (12H, olefinic H) (Maoka Takashi)
m/z: 568 (M), 550 (M-18), 532 (M-18-18), 476 (M-92), 462 (M-106) (Maoka Takashi)
CD cotton effect (in EPA): De 268nm (-24.0)
[Spectrum 0030] (Ref. 0115)
CD cotton effect: De 268 nm (-9.2) (Ref. 0133)
HPLC (column: Spherisorb S-5 CN, eluent: hexane-CH2Cl2-MeOH-NEt(iso-Pr)2 80.4:17:2.5:0.1)
[Chromatogram 0015] (Ref. 0128)
HPLC (column: Sumipax OA-2000 (5mm) 0.4times25 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.3, flow: 0.6 ml/min)
[Chromatogram 0017] (Ref. 0069/0130)
HPLC (column: Sumipax OA-2000 (5mm) 0.8times30 cm, eluent: hexane-CH2Cl2-EtOH 54:10:0.1, flow: 1.2 ml/min)---separation of dibenzoate of tunaxanthins
[Chromatogram 0018] (Ref. 0069/0130)
HPLC (column: Zorbax CN 0.4times25 cm, eluent: hexane-CH2Cl2-NEt(iso-Pr)2 90:10:0.1, flow: 4.0 ml/min)
[Chromatogram 0020] (Ref. 0112)
Sebastes inermis (integuments), Seriola quinqueradiata (integuments), Prognichthys agoo (integuments), Stephanolepis cirrhifer (integuments), Coryphaena hippurus (integuments) (Ref. 0112)
Oxyjulis californica (integuments) (Ref. 0133)
integuments of several fishes (Ref. 0458)

Marine fish egg (Prognichthys aggo, Seriola quinqueradiata): astaxanthin a_right idoxanthin a_right b,b-carotene-3,4,3'-triol a_right zeaxanthin a_right 3-hydroxy-b,e-caroten-3'-one a_right e,e-carotene-3,3'-dione a_right 3-hydroxy-e,e-caroten-3'-dione a_right tunaxanthin A, B and C (Ref. 0408)

Yellowtail (Seriola quinqueradiata): astaxanthin a_right b-carotene-triol a_right zeaxanthin a_right 3'-epilutein a_right tunaxanthin A, B and C (Ref. 0430/0435)
Red sea bream (Pagrus major): astaxanthin a_right b-carotene-triol a_right zeaxanthin a_right 3'-epilutein a_right tunaxanthin A, B, and C (Ref. 0432)

Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
40
Canthaxanthin
b,b-Carotene-4,4'-dione
VCA0040
Masayoshi Ito
C40H52O2 564.840 Download ChemDraw structure file
Antioxidant activity (Ref. 0092/0093/0215/0226/0489/0490/0491)
Singlet oxygen quenching activity (Ref. 0230/0441/0492)
Immunomodulating action (Ref. 0213)
Chemoprevention of carcinogenesis (Ref. 0219) Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
212-213degC (Ref. 0121)
216-217degC (Ref. 0138)
lmax (nm): cyclohexane 469 (E 1%1cm = 2200) (Ref. 0121); hexane 466 (Ref. 0136); benzene 476 (Ref. 0136); petrol 465-467 (E 1%1cm = 2200) (Ref. 0138); methanol
[Spectrum 1109]
nmax(KBr)/cm-1: 3020, 2950, 2910, 2850 (CH), 1650 (CO), 1575, 1550, 1450, 1385, 1360, 1350, 1340, 1320, 1300, 1250, 1178, 1072, 958, 946 (Ref. 0136)
1H-NMR d(CDCl3): 1.195 (s, ca. 12H, 1,1'-gem-Me), 1.853 (t, J 6.7, 4H, 2,2'-H2), 1.873 (s, 6H, 5,5'-Me), 1.983 (s, 6H, 13,13'-Me), 2.003 (s, 6H, 9,9'-Me), 2.508 (t, J 6.7, 4H, 3,3'-H2), 6.24 (d, J 16, 2H, 7,7'-H), 6.28 (d, J 12, 2H, 10,10'-H), ca. 6.30 (m, 2H, 14,14'-H), 6.35 (d, J 16, 2H, 8,8'-H), 6.43 (d, J 14.8, 2H, 12,12'-H), ca. 6.65 (m, 4H, 11,11',15,15'-H) (Ref. 0420)
13C-NMR d(CDCl3): 35.7 (1, 1'), 37.7 (2, 2'), 34.3 (3, 3'), 198.7 (4, 4'), 129.9 (5, 5'), 160.9 (6, 6'), 124.2 (7, 7'), 141.1 (8, 8'), 134.8 (9, 9'), 134.3 (10, 10'), 124.7 (11, 11'), 139.3 (12, 12'), 136.6 (13, 13'), 133.6 (14, 14'), 130.5 (15, 15'), 27.7 (1, 1'-gem-Me), 13.7 (5, 5'-Me), 12.5 (9, 9'-Me), 12.7 (13, 13'-Me) (Ref. 0061)
m/z: 564 (M, 100%), 549 (M-15, 20.6%), 508 (M-56, 8.4%), 484 (M-80, 9.4%), 472 (M-92, 44.9%), 458 (M-106, 12.2%) (Ref. 0059/0136)
FD-MS m/z: 564 (100%), 282 (M2+, 1%) (Ref. 1053)

RF-TLC on 0.25 mm RP-18 layers (Merck, Art. 15423) using several ratio of light petroleum (bp 40-60degC)-acetonitrile-methanol ex: 1:6:3 Rf=0.29, 3:1:6 Rf=0.57 (Ref. 0135)
HPLC (column: Sperisorb S 5-CN 0.31times50 cm, eluent: hexane/isopropyl ethanoate/2-propanol/N-ethyldiiopropylamine 82.4:17:0.5:0.1, flow: 1.0 ml/min) Retention time: 610 sec (Ref. 0420)
Phoenicoparrus andinus, Phoenicoparrus jamesi, Phoenicoparrus ruber (plasma, feathers) (Ref. 0476), Eudocimus ruber (plasma, shin, feathers) (Ref. 0477) Daphinia madna (Ref. 0478/0481), Hydra littoralis, Hydra pirardi (Ref. 0479), Artemia salina (Ref. 0483/0482), Stichopus japonicus, Holothuria leucospilota, Holothuria moebi, Holothuria pervicax, Cucumaria japonica, Cucumaria echinata, Pentacta australis (Ref. 0454) Psolus fabrichii (Ref. 0471) Thamnocephalus platyurus, Streptocephalus torvicornis, Branchinella kugenumaenis, Branchinecta lindahli, Chirocephalus diaphanus (Ref. 0484), Botryococcus braunii (Ref. 1081) Oncoryhnchus rhodurus (integuments and muscle) (Ref. 0472) Oncoryhnchus masou macrostomus , Salmo gairdneri (integuments) (Ref. 0473)
Bradyrhizobium sp. strains (aerobic photosynthetic bacteria) (Ref. 1121/1156)
Racemic a-ionone was transformed into the the 4-oxo-b-ionone via the 4,5-epoxide. Successive Grignard reaction with vinyl magnesium chloride, halogenation, and reaction with a sodium sulphinate gave the 4-oxo-C15-sulphone, which was transformed to the corresponding ketal. Reaction with the C10-dialdehyde, reduction with sodium dithionite/NH3, deprotection, and isomerization gave (all-E)-canthaxanthin. (Ref. 0019)
4-Oxo-C15-phosphonium salt was prepared via the reaction of 2,6,6-3-isobutoxy-2-cyclohexenone with the protected (E)-methylpent-2-en-4-yn-1-ol, or via the reaction of 2,6,6-trimethyl-2-cyclohexenone with 3-(1-ethoxyethoxy)-3-methyl-1-penten-4-yne. Wittig reaction with the C15-phosphonium salt with the C10-dialdehyde provided canthaxanthin. (Ref. 0134)
6-Ethylenedioxy-3,3-diemthyloctan-2-one, derived from the half-ester acid chloride of a,a-dimethylglutaric acid, was condensed with crocetin-dial, deprotected and then cylized with alkali to provide canthaxanthin. (Ref. 0139)
b-Ionone was transformed into dehydro-retro-C19-aldehyde, which was condensed with acetylene using i-PrMgBr and treated with AcOH to provide 4,4-diacetoxy-15,15'-dehydro-b-carotene. Hydrolysis, Oppennauer-oxidation, partial hydrogenation and successive isomerization gave canthaxanthin. (Ref. 0138)
4-Acetoxy-retinal was condensed with retinyltriphenylphosphonium sulfate to yield the acetate of isocryptoxanthin, which was treated with 68% HBr to give dehydro-retro-carotene. This was treated with NBS and AcOH to yield the acetate of isozeaxanthin, which was converted to canthaxanthin. (Ref. 0121)
Phoenicoparrus ruber (flamingo): b-Carotene a_right echinenone a_right canthaxanthin (Ref. 0480)
Daphinia madna: b-Carotene a_right echinenone a_right canthaxanthin (Ref. 0481)
Artemia salina (brine shrimp): b-Carotene a_right echinenone a_right canthaxanthin (Ref. 0482/0483)
Botryococcus braunii (green alga): b-Carotene a_right echinenone a_right canthaxanthin (Ref. 0485)
Salmo gairdneri (rainbow trout): canthaxanthin a_right echinenone a_right b-carotene (Ref. 0487/0406/0407)
Salmo salar (salomn): canthaxanthin a_right echinenone a_right b-carotene (Ref. 0406/0407)

Tilapia nilotica (tilapia): canthaxanthin a_right b-carotene a_right retinol (Ref. 0417/0216)
Micropterus salmoides (black bass): canthaxanthin a_right 3-dehydroretinol (Ref. 0216)
Plecoglossus altivelis (ayu): canthaxanthin a_right 3-dehydroretinol (Ref. 0216)
Rat: canthaxanthin a_right 3-dehydroretinol (Ref. 0216)
Astaxanthin and canthaxanthin are accumulated in lipoidal globules of Scenedesmus komarekii (Chlorophyceae, Chlorophyta) cultured under high light intensity and nitrogen limitaion (Ref. 1147).
A gene required for the biosynthesis of canthaxanthin from b-carotene was isolated from the marine bacteria, Agrobacterium aurantiacum and Alcaligenes sp. strain PC-1 (present name; Paracoccus sp. N81106 and MBIC03024, respectively), and the function of the gene was determined (Ref. 0202/1008). b-Carotene is converted to canthaxanthin by the dioxygenation enzyme CrtW (b-carotene ketolase) by way of echinenone under the presence of O2, Fe2+, and 2-oxoglutarate (Ref. 0205/1002). The corresponding gene was also isolated from Haematococcus pluvialis (green alga) (Ref. 0203/1011).
All of the genes for canthaxanthin synthesis (crtE, crtB, crtI, crtY and crtW) is isolated from Bradyrhizobium sp. strain ORS278 (aerobic photosynthetic bacterium) and functionaly identified (Ref. 1121), and this bacterium also has spirilloxanthin synthesis genes (Ref. 1284).
Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
41
Lutein G
(3S,3'R,6'S)-b,e-Carotene-3,3'-diol
VCA0041
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

145-147degC (Ref. 0452)
lmax (nm): petrol 420, 444, 472 (Ref. 0452)
1-NMR d (300MHz, CDCl3): 0.85 s (3H, 16'-H), 0.94 s (3H, H-17'), 1.07 s (6H, H-16, 17), 1.39 d,d (1H, H-2'ax), 1.48 d,d (1H, H-2ax), 1.64 s (3H, H-18'), 1.65 d,d(1H, H-2'eq), 1.74 s (3H, H-18), 1.91 s (3H, H-19'), 1.97 s (9H, H-19, 20, 20'), 2.04 d,d (1H, H-4ax), 2.39 d,d (1H, H-4eq), 2.16 d (1H, H-6'), 4.00 m (1H, H-3), 4.23 m (1H, H-3'), 5.48 br.s (1H, H-4'), 5.53 d,d (1H, H-7'), 6.1-6.7 (13H, olefinic H) (Ref. 0452)
m/z: 568 (M), 550 (M-18), 532 (M-18-18) (Ref. 0452)
CD data in EPA solution: De 220 (-2.0), 245 (-11.2), 272 (0), 288 (+5.5), 308 (0), 333 (-3.1), 370 (-0.5)
[Spectrum 0028] (Ref. 0452)

Podothecus sachi (integuments) (Ref. 0452), Epinephelus fario (integuments) (Ref. 0452)




42
Eschscholtzxanthone
(3'S)-3'-Hydroxy-4',5'-didehydro-4,5'-retro-b,b-caroten-3-one
VCA0042
Masayoshi Ito
C42H52O2 588.861 Download ChemDraw structure file
Antioxidative activity (Ref. 0460)
lmax (nm): ether 480 (Ref. 0460)
nmax(KBr)/cm-1: 3400 (OH), 1660 (conj. C=O), 973, 950 (retro type olefin) (Ref. 0450)
1H-NMR d(300 MHz, CDCl3): 1.25 (3H, s, 16'-Me), 1.39(6H, s, 16',17'-Me), 1.45 (3H, s, 17'-Me), 1.51 (1H, dd J 12, 8, 2'ax-H), 1.81 (1H, dd J 12, 5, 2'eq-H), 1.95 (3H, d J1.5, 18'-Me), 1.97 (6H, s, 19', 20'-Me), 2.00 (3H, s, 20'-Me), 2.03 (3H, s, 19'-Me), 2.159 (3H, d J 1, 18-Me), 2.40 (2H, s, 2-H), 4.35 (1H, m, H-3'), 5.94 (1H, br.s, 4-H), 6.26-6.91 (14H, olefinic H) (Ref. 0460)
m/z: 564 (M, 18%), 546 (20%), 532 (8%), 454 (6%), 119 (100%), 107 (76%), 91(78%) (Ref. 0460)
CD data in ether solution: De 232 (+4.0), 240 (0), 272 (+5.7), 285(0), 318(-7.2), 345 (0), 390 (+5.0) (Ref. 0460)

Taxus caspidata (berries) (Ref. 0460)

Taxus caspidata: Eschscholtzxanthin a_right eschscholtzxanthone a_right rhodoxanthin(Ref. 0460>


43
4-Ketolutein D
(3S,3'S,6'S)-3,3'-Dihydroxy-b,e-caroten-4-one
VCA0043
Masayoshi Ito
C40H54O3 582.855 Download ChemDraw structure file

lmax (nm): ether 454 - 470 (Ref. 0475)
1H-NMR d(300 MHz, CDCl3): 0.85 (3H, s, 16'-Me), 1.00 (3H, s, 17'-Me), 1.21 (3H, s, 16-Me), 1.32(3H, s, 17-Me), 1.63 (3H, d, 18'-Me), 1.95 (3H, s, 18-Me), 3.68 (1H, d, OH), 4.32 (1H, dd, H-3), H1.97 (6H, s, 19', 20'-Me), 2.00 (3H, s, 20'-Me), 2.03 (3H, s, 19'-Me), 2.159 (3H, d J 1, 18-Me), 2.40 (2H, s, 2-H), 4.25 (1H, m, 3'-H), 5.43 (1H, dd, 7'-H), 5.55 (1H, br.s, 4-H), 6.1-6.7 (13H, olefinic H) (Ref. 0475)
m/z: 582 (M), 564 (M-18) (Ref. 0475)
CD data in ether solution: De 220 (10.0), 240 (0), 252 (+1), 260(0), 290(-13.5), 335 (0), 355 (+1.0) (Ref. 0475)

Branchiostegus japonicus (integuments) (Ref. 0475)

Branchiostegus japonicus: Astaxanthins a_right 4-ketozeaxanthins a_right 4-ketoluteins a_right luteins a_right tunaxanthins (Ref. 0475)


44
4-Ketolutein F
(3S,3'R,6'S)-3,3'-Dihydroxy-b,e-caroten-4-one
VCA0044
Masayoshi Ito
C40H54O3 582.855 Download ChemDraw structure file

lmax (nm): ether 454 - 470 (Ref. 0475)

m/z: 582 (M), 564 (M-18) (Ref. 0475)
CD data in ether solution: De 225 (-2.0), 248 (-6.0), 260(0), 275(-5.5), 335 (-2), 360 (-5.5) (Ref. 0475)

Branchiostegus japonicus (integuments) (Ref. 0475)

Branchiostegus japonicus: Astaxanthins a_right 4-ketozeaxanthins a_right 4-ketoluteins a_right luteins a_right tunaxanthins (Ref. 0475)


45
Capsanthin
(3R,3'S,5'R)-3,3'-Dihydroxy-b,k-caroten-6'-one
VCA0045
Masayoshi Ito
C40H56O3 584.871 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
Singlet oxygen quenching activity (Ref. 0441)
Anti-tumore promoting effect (Ref. 1095)
Anti-oxidative activity (Ref. 1096)
Suppressing efect of generation of superoxide and nitric oxide (Ref. 1097)
178degC (Ref. 0140)
lmax (nm) (E 1%1cm): hexane 288 (353), 355 (147), 452sh (1675), 470 (1965), 497 (1560) (Ref. 0140)
nmax(KBr)/cm-1: 3446m (OH), 1666m (conj. C=O), 1580s, 1555s, 1518s (conj. C=C), 1053s, 1009s, 967s (Ref. 0140)
1H-NMR d(400 MHz, CDCl3): 0.84 (3H, s, 16'-Me), 1.08 (6H, s, 16,17-Me), 1.21 (3H, s, 17'-Me), 1.37(3H, s, 18'-Me), 1.74 (3H, s, 18-Me), 1.96 (3H, s, 19'-Me), 1.97 (6H, s, 19,20-Me), 1.99 (3H, s, 20'-Me), 2.39 (1H, ddd, J 17, 6, 1.5, 4a-H), 2.96 (1H, dd, J 15.5, 9, 4'a-H), ca. 4.00 (1H, br m, 3-H), 4.52 (1H, m, 3'-H), 6.13 (2H, s, 7,8-H), 6.16 (1H, d, J 11.6, 10-H), 6.26 (1H, d, J 11, 14-H), 6.35 (1H, d, J 11, 14'-H), 6.36 (1H, d, J 15, 12-H), 6.45 (1H, d, J 15, 7'-H), 6.52 (1H, d, J 15, 12'-H), 6.55 (1H, d, J 11, 10'-H), ca. 6.6-6.8 (4H, m, 11,11',15,15'-H), 7.33 (1H, d, J 15, 8'-H) (Ref. 0140)
13C-NMR d(100.6 MHz, CDCl3): 12.75 (C19), 12.79 (C20), 12.84 (C19'), 12.90 (C20'), 21.39 (C18'), 21.63 (C18), 25.16 (C17'), 25.95 (C16'), 28.80 (C16), 30.32 (C17), 42.69 (C4), 44.01 (C1'), 45.49 (C4'), 48.61 (C2), 51.06 (C2'), 59.01 (C5'), 65.14 (C3), 70.44 (C3'), 121.04 (C7'), 124.13 (C11'), 125.58 (C11), 125.93 (C7), 126.30 (C5), 129.74 (C15'), 131.27 (C10), 131.68 (C15'), 132.39 (C14), 133.69 (C9'), 135.24 (C14'), 135.93 (C13'), 137.46 (C12), 137.60 (C13), 137.85 (C6), 138.51 (C8), 140.63 (C10'), 141.97 (C12'), 146.86 (C8'), 202.82 (C6') (Ref. 0140)
m/z: 584 (75, M), 478 (62), 429 (6), 145 (51), 127 (36), 109 (100), 106 (31), 105 (44), 91 (65), 83 (56) (Ref. 0140)
CD in dioxane: De 356 (+1.65), 337sh (+0.51), 319sh (-0.92), 300 (-6.48), 294 sh (-5.91), 276sh (-1.30), 256 (+4.55), 247sh (+3.25), 240sh (+0.99), 226 (-3.71) (Ref. 0140)
TLC [Kieselgel F254 (Merck); CHCl3-acetone 9:1) Rf = 0.22 (Ref. 0140)
HPLC (columun: Chromsil C18 6mm end-capped, detection at 450nm, eluent 12% (v/v) H2O in MeOH (A), MeOH (B), 50% (v/v) acetone in MeOH (C). The gradient program was 100% A, 8min, to 80% A/20% B in 8 min, to 50% A/50% B in 8min, to 100% B in 7 min, 100% B, 2min, to 100% C in 6min, 100% C, 5min (linear steps), The flow rate was 1.5 mL/min. capsanthin 3,6-epoxide tR=16 min, capsanthin tR=17min, cryptpcapsin tR=32 min. (Ref. 0506)
HPLC (columun: Sheriosorb ODS 2, 250X4mm i.d. 5 mm, flow rate 1.5ml/min, detection 450nm, solvent system (A) hexane-EtOAc-EtOH-acetone (96:3:2:2); (B) light petrolum ether -acetone-diethylamine (10:4:1); (C) CH2Cl2-EtOAc (4:1), solvent A, B, C gradient, gradient program in text, capsorubin tR=3.49, capsanthin tR=6.35 min, capsanthin tR=17min, cryptpcapsin tR=11.85 min. (Ref. 0507)
Capsicum annuum (red paprika) (Ref. 0142)
Aldol condensation between (3R)-3-hydroxy-8'-b-apo-carotenal and [(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]methylketone with sodium hydride as a base provided capsanthin. (Ref. 0140)
Zeaxanthin a_right antheraxanthin a_right capsanthin in Capsicum annuum (Ref. 0515) in Caosicum annuum chrmoplastes (Ref. 0514)
Changes in carotenoid composition and content during ripening of selective cultivars for paprika (Capsicum annuum) production (Ref. 1271).
The capsanthin-capsorubin synthase (CCS) gene was isolated from Capsicum annuum (red pepper) in 1994 (Ref. 1023). It is considered that capsanthin is synthesized from antheraxanthin by CCS.

46
Capsorubin
(3S,5R,3'S,5'R)-3,3'-Dihydroxy-k,k-carotene-6,6'-dione
VCA0046
Masayoshi Ito
C40H56O4 600.870 Download ChemDraw structure file
Singlet oxygen quenching activity (Ref. 0441)
Anti-tumore promoting effect (Ref. 1095)
Anti-oxidative activity (Ref. 1096)
Suppressing efect of generation of nitric oxide (Ref. 1097)
214-216degC (Ref. 0140)
216-217degC (Ref. 0141)
lmax (nm) (E 1%1cm): hexane 297 (310), 423sh (845), 445 (1528), 471 (2218), 505 (1985) (Ref. 0140); benzene 303 (284), 435sh (746), 445 (1528), 461 (1303), 487 (1838), 521 (1635) (Ref. 0140/0141>
nmax(KBr)/cm-1: 3464s (OH), 1669s (conj. C=O), 1588s, 1556s (conj. C=C), 1055s, 983s (Ref. 0140/0141)
1H-NMR d(400 MHz, CDCl3): 0.84 (6H, s, 16,16'-Me), 1.21 (6H, s, 17,17'-Me), 1.37 (6H, s, 18,18'-Me), 1.48 (2H, dd, J 14.5, 4, 4b,4'b-H), 1.71 (2H, dd, J 13.5, 4, 2b,2'b-H), 1.96 (6H, s, 19,19'-Me), 1.99 (6H, s, 20,20'-Me), 2.00 (2H, dd, J 13.5, 7, 2a,2'a-H), 2.96 (2H, dd, J 14.5, 8.5, 4a,4'a-H), 4.51 (2H, m, 3,3'-H), 6.36 (2H, m, 14,14'-H), 6.45 (2H, d, J 15, 7,7'-H), 6.52 (2H, d, J 14.5, 12,12'-H), 6.55 (2H, d, J 11, 10,10'-H), 6.64 (2H, dd, J 14.7, 11, 11,11'-H), 6.69 (2H, m, 15,15'-H), 7.32 (2H, d, J 15, 7,7'-H) (Ref. 0140)
13C-NMR d(100.6 MHz, CDCl3): 12.88 (C19,19',20,20'), 21.37, 25.15, 25.93 (C16,16',17,17',18,18'), 44.02 (C1,1'), 45.44 (C4,4'), 51.02 (C2,2'), 59.03 (C6,6'), 70.42 (C3,3'), 121.23 (C7,7'), 124.67 (C11,11'), 146.76 (C8,8'), 202.87 (C6,6') (Ref. 0140/0061)
m/z: 600 (10, M), 494 (9), 445 (5), 221 (10), 145 (16), 127 (48), 109 (100), 106 (15), 105 (15), 91 (28), 83 (46) (Ref. 0140/0141)
CD in dioxane: De 374 (-3.13), 366sh (-2.94), 358sh (-2.64), 339sh (-1.30), 331sh (-0.91), 301 (+6.14), 290sh (+4.10), 268sh (+0.11), 258sh (-1.00), 252 (-1.47), 249 (-1.41), 239sh (-1.13), 224sh (+0.61) (Ref. 0140/0141)
TLC [Kieselgel F254 (Merck); CHCl3-acetone 9:1) Rf = 0.15 (Ref. 0140)
HPLC (columun: Chromsil C18 6mm end-capped, detection at 450nm, eluent 12% (v/v) H2O in MeOH (A), MeOH (B), 50% (v/v) acetone in MeOH (C). The gradient program was 100% A, 8min, to 80% A/20% B in 8 min, to 50% A/50% B in 8min, to 100% B in 7 min, 100% B, 2min, to 100% C in 6min, 100% C, 5min (linear steps), The flow rate was 1.5 mL/min. capsanthin 3,6-epoxide tR=16 min, capsanthin tR=17min, cryptpcapsin tR=32 min. (Ref. 0506)
HPLC (columun: Sheriosorb ODS 2, 250X4mm i.d. 5 mm, flow rate 1.5ml/min, detection 450nm, solvent system (A) hexane-EtOAc-EtOH-acetone (96:3:2:2); (B) light petrolum ether -acetone-diethylamine (10:4:1); (C) CH2Cl2-EtOAc (4:1), solvent A, B, C gradient, gradient program in text, capsorubin tR=3.49, capsanthin tR=6.35 min, capsanthin tR=17min, cryptpcapsin tR=11.85 min. (Ref. 0507)
Capsicum annuum (red paprika) (Ref. 0142)
Aldol condensation between crocetindialdehyde and [(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]methylketone with sodium hydride as a base provided capsorbin. (Ref. 0019/0140)
Zeaxanthin a_right violaxanthin a_right capsorubin in Capsicum annuum (Ref. 0515) in Caosicum annuum chrmoplastes (Ref. 0514)
Changes in carotenoid composition and content during ripening of selective cultivars for paprika (Capsicum annuum) production (Ref. 1271).
The capsanthin-capsorubin synthase (CCS) gene was isolated from Capsicum annuum (red pepper) in 1994 (Ref. 1023). It is considered that capsorubin is synthesized from violaxanthin by CCS.

47
Cryptocapsin
(3'S,5'R)-3'-Hydroxy-b,k-caroten-6'-one
VCA0047
Masayoshi Ito
C40H56O2 568.871 Download ChemDraw structure file

172-174degC (Ref. 0140)
lmax (nm) (E 1%1cm): hexane 284 (390), 354 (260), 452sh (1780), 472 (2110), 494sh (1685) (Ref. 0140); benzene 289 (328), 462sh (1510), 485 (1810), 506sh (1525) (Ref. 0140)
nmax(KBr)/cm-1: 3440m (OH), 1668s (conj. C=O), 1580s, 1558s,1516s (conj. C=C), 1055s,1007s, 968s (Ref. 0140)
1H-NMR d(400 MHz, CDCl3): 0.84 (3H, s, 16'-Me), 1.03 (6H, s, 16,17-Me), 1.21 (3H, s, 17'-Me), 1.37 (3H, s, 18'-Me), 1.72 (3H, s, 18-Me), 1.96 (3H, s, 19'-Me), 1.98 (6H, s, 19,20-Me), 1.99 (3H, s, 20'-Me), 2.96 (1H, dd, J 14.5, 8.7, 4'a-H), 4.51 (1H, m, 3'-H), 6.14 (1H, d, J 16.3, 8-H), ca. 6.15 (1H, 10-H), 6.19 (1H, d, J 16.3, 7-H), 6.26 (1H, br d, J 11, 14-H), ca. 6.36 (2H, m, 12,14'-H), 6.44 (1H, d, J 15, 7'-H), 6.52 (1H, d, J 15, 12'-H), 6.55 (1H, d, J 11, 10'-H), ca. 6.58-6.74 (4H, m, 11,11',15,15'-H), 7.33 (1H, d, J 15, 8'-H) (Ref. 0140)
13C-NMR d(100.6 MHz, CDCl3): 12.72, 12.78, 12.82, 12.87 (C19,19'20,20'), 19.28 (C3), 21.35 (C18'), 21.77 (C18), 25.10, 25.89 (C16',17'), 28.99 (C16, 17), 33.14 (C4), 34.28 (C1), 39.69 (C2), 43.95 (C1'), 45.31 (C4'), 50.89 (C2'), 58.91 (C5'), 70.24 (C3'), 120.91 (C7'), 124.04 (C11'), 125.71 (C11), 126.97 (C7), 129.46 (C5), 129.60 (C15), 130.82 (C10), 131.73 (C15'), 132.22 (C14), 133.58 (C9'), 135.36 (C14'), 135.79 (C13'), 136.47 (C9), 137.09 (C12?), 137.68 (C13), 137.74 (C8?), 137.94 (C6), 140.76 (C10'), 142.05 (C12'), 146.90 (C8'), 202.94 (C6') (Ref. 0140)

[Spectrum 0032] Maoka Takashi
CD in dioxane: De 365 (-1.14), 355sh (-0.90), 348sh (-0.74), 332sh (-0.30), 318sh (-0.04), 294 (+2.52), 289sh (+2.37), 268sh (+0.45), 257sh (-0.37), 254 (-0.45), 241sh (-0.45), 238 (-0.84), 229 (+0.11) (Ref. 0140)
TLC [Kieselgel F254 (Merck); CHCl3-acetone 9:1) Rf = 0.45 (Ref. 0140)
HPLC (columun: Chromsil C18 6mm end-capped, detection at 450nm, eluent 12% (v/v) H2O in MeOH (A), MeOH (B), 50% (v/v) acetone in MeOH (C). The gradient program was 100% A, 8min, to 80% A/20% B in 8 min, to 50% A/50% B in 8min, to 100% B in 7 min, 100% B, 2min, to 100% C in 6min, 100% C, 5min (linear steps), The flow rate was 1.5 mL/min. capsanthin 3,6-epoxide tR=16 min, capsanthin tR=17min, cryptpcapsin tR=32 min. (Ref. 0506)
HPLC (columun: Sheriosorb ODS 2, 250X4mm i.d. 5 mm, flow rate 1.5ml/min, detection 450nm, solvent system (A) hexane-EtOAc-EtOH-acetone (96:3:2:2); (B) light petrolum ether -acetone-diethylamine (10:4:1); (C) CH2Cl2-EtOAc (4:1), solvent A, B, C gradient, gradient program in text, capsorubin tR=3.49, capsanthin tR=6.35 min, capsanthin tR=17min, cryptpcapsin tR=11.85 min. (Ref. 0507)
Capsicum annuum (red paprika) (Ref. 0142)
Aldol condensation between 8'-b-apo-carotenal and [(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]methylketone with sodium hydride as a base provided cryptocapsin. (Ref. 0140)



48
Capsanthin 3,6-epoxide
(3S,5R,6R,3'S,5'R)-3,6-Epoxy-5,3'-dihydroxy-5,6-dihydro-b,k-caroten-6'-one
VCA0048
Masayoshi Ito
C40H56O4 600.870 Download ChemDraw structure file
Anti-tumore promoting effect (Ref. 1095)
Anti-oxidative activity (Ref. 1096)
Suppressing efect of generation of superoxide and nitric oxide (Ref. 1097)
169-170degC (Ref. 0504)
lmax (nm) : benzene 507, 481 (Ref. 0505)
1H-NMR d(400 MHz, CDCl3): 0.84 (3H, s, 16'-Me), 0.88 (3H, s 17-Me), 1.20 (3H, s 17'-Me), 1.21 (3H, s, 18-Me), 1.36 (3H, s, 18'-Me), 1.43 (3H, s 16-Me), 1.48 (1H, dd, J 14.5, 3.3, 4'-Hb), 1.61 (1H, d, J 11.6, 2-Heq), 1.67 (1H, d, J 11.9, 4-Heq), 1.71 (1H, dd, J 13.8, 4.7, 2-Hb), 1.84 (1H, ddd, J 11.6, 6, 2.4, 2-Hax), 1.99 (1H, dd, J 13.8, 7.8, 2-Heq), 1.95 (6H, s, 19, 19'-Me), 1.97 (3H, s, 20'-Me), 1.98 (3H, s, 20-Me), 2.00 (1H, dd, J 13.5, 7, , 2'-Ha), 2.06 (1H, ddd, J 11.9, 6.0, 2.4, 4-Hax), 2.95 (1H, dd, J 14.5, 8.5, 4'-Ha),4.39 (1H, t, J 6, 3-H), 4.51 (1H, m, 3'-H), 5.75 (1H, d, J16.1, 7-H), 6.20 (1H, d, J 11.5, 10-H), 6.26 (1H, m, 14-H), 6.35 (1H, m, 14'-H), 6.36 (1H, d, J 14.7, 12-H), 6.37 (1H, d, J 16.1, 8-H), 6.44 (1H, d, J 15.2, 7'-H), 6.51 (1H, d, J 14.5, 12'-H), 6.61 (1H, dd, J 11, 14.5, 11'-H), ca. 6.62 (1H, m, 15-H), 6.65(1H, dd, J11.5, 14.7, 11-H), 6.69 (1H, m, 15'-H), 7.33 (1H, d, J 15.2, 8'-H) (Ref. 0505)
13C-NMR d(100.6 MHz, CDCl3): 12.73 (C20'), 12.84 (C20), 12.86 (C19,19'), 21.28 (C18'), 25.08 (C17'), 25.72 (C16), 25.85 (C16'), 31.57 (C18), 32.15 (C17), 43.96 (C1'), 43.98 (C 1), 45.30 (C4'), 47.71 (C4), 48.49 (C2), 58.85 (C2'), 58.93 (C5'), 70.36 (C3'), 75.73 (C3), 82.47 (C5), 91.64 (C6), 120.87 (C7'), 123.10 (C7), 124.08 (C11'), 125.40 (C11), 129.72 (C15), 131.51 (C15'), 131.61 (C10), 132.43 (C14), 133.63 (C9'), 134.82 (C8), 135.20 (C9), 135.23 (C14'), 135.92 (C13), 137.51 (C13'), 137.60 (C12), 140.70 (C10'), 141.96 (C12'), 146.86 (C8'), 202.91 (C6') (Ref. 0505)
m/z: 600 (8, M), 582 (2), 494 (13), 229 (8), 286 (7), 221 (28), 181 (16), 160 (14), 155 (14), 145 (28), 119 (22), 109 (100) (Ref. 0505)
CD in EPA: De 243 (-1.34), 281 (+3.38), 353 (-1.31)(Ref. 0505)
HPLC (columun: Chromsil C18 6mm end-capped, detection at 450nm, eluent 12% (v/v) H2O in MeOH (A), MeOH (B), 50% (v/v) acetone in MeOH (C). The gradient program was 100% A, 8min, to 80% A/20% B in 8 min, to 50% A/50% B in 8min, to 100% B in 7 min, 100% B, 2min, to 100% C in 6min, 100% C, 5min (linear steps), The flow rate was 1.5 mL/min. capsanthin 3,6-epoxide tR=16 min, capsanthin tR=17min, cryptpcapsin tR=32 min. (Ref. 0506)
Capsicum annuum (red paprika) (Ref. 0504/0505)

Zeaxanthin a_right antheraxanthin a_right capsanthin a_right capsanthin 5,6-epoxide a_right capsanthin 3,6-epoxide in Capsicum annuum (red paprika) (Ref. 0504/0506)


49
7,8-Didehydroastaxanthin
(3S,3'S)-3,3'-dihydroxy-7,8-Didehydro-b,b-carotene-4,4'-dione
VCA0049
Masayoshi Ito
C40H50O4 594.823 Download ChemDraw structure file

211-212degC (Ref. 0143)
lmax (nm) (e): benzene 300sh (16,466), 330 (16,481), 493 (102,913) (Ref. 0143); pyridine 324 (20,175), 496 (109,336), 520sh (96,320) (Ref. 0143); CS2 480sh (83,718), 507 (103,546), 540sh (81,515) (Ref. 0143)
nmax(KBr)/cm-1: 3506m (OH), 2160m (acetylene), 1664s (conj. C=O), 1564m (conj. C=C), 1374m, 1365m (gem. dimethyl), 1079s (OH), 970s (trans CH=CH) (Ref. 0143)
1H-NMR d(400 MHz, CDCl3): 1,211, 1.323 (16',17'-Me), 1.312, 1.356 (16,17-Me), 1.801 (t, J 13.4, 2ax-H), 1.811 (t, J 13.4, 2'ax-H), 1.945 (18'-Me), 1.976 (20-Me), 1.999 (20'-Me), 2.003 (19'-Me), 2.026 (8-Me), 2.047 19-Me), 2.16 (dd, J 12.6, 5.6, 2'eq-H), 2.22 (dd, J 12.6, 5.5, 2eq-H), 3.610 (d, J 1.6, 3-OH), 3.682 (d, J 1.8, 3'-OH), 4.30-4.36 (2H, m, 3'ax, 3ax-H), 6.222 (d, J 16, 7'-H), 6.28-6.70 (11H, 10',14,14',8',12,12',11,10,11',15,15'-H) (Ref. 0143)
13C-NMR d(67.892 MHz, CDCl3): 12.59 (19'Me), 12.74, 12.85 (20,20'-Me), 13.99 (18'-Me), 14.33 (18-Me), 17.60 (19-Me), 26.15, 30.74 (16',17'-Me), 26.18, 31.04 (16,17-Me), 36.63 (1C), 36.80 (1'C), 44.20 (2C), 45.47 (2'C), 69.21, 69.32 (3,3'C), 88.01, 110.99 (7,8C), 117.43 (9C), 123.41, 123.77, 124.86, 126.87, 130.52, 131.27, 133.60, 133.72, 134.73, 134.95, 135.14, 136.32, 137.13, 138.99, 139.65, 140.62, 142.30 (9',11,11',15,15',5,5',14,14',13,13',10,10',12,12',8',7'C), 147.71 (6C), 162.18 (6'C), 199.28 (4C) (Ref. 0143)
m/z: 594 (65, M), 592 (26), 578 (18), 576 (19), 203 (93), 119 (67), 105 (70), 91 (100) (Ref. 0143)
CD: De 372 (+4.02), 317 (-14.13), 300sh (-11.3), 275 (+3.78), 263sh (+1.0), 247 (-3.35), 224 (+4.10) (Ref. 0143)
TLC [Kieselgel F254 (Merck); CH2Cl2-ether 4:1) Rf = 0.20 (Ref. 0143)
HPLC (column: Spherisorb S 5-CN 0.31times50 cm, eluent: hexane/isopropyl ethanoate/2-propanol/N-ethyldiisopropylamine, 82.4:17:0.5:0.1, flow rate: 1 ml/min)
[Chromatogram 0021] --- di-(-)-camphanate tR = 1168 sec [all-E-(3R,3'S)], 1406 sec [all-E-(3S,3'S)] (Ref. 0420)
HPLC (column: Sperisorb S 5-CN 0.31times50 cm, eluent: hexane/isopropyl ethanoate/2-propanol/N-ethyldiiopropylamine 82.4:17:0.5:0.1, flow: 1.0 ml/min) Retention time: 914 sec (Ref. 0420)
Asterias rubens (Starfish) (Ref. 0420)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)
Watasenia scintilans, Sepia modokai, Sepia officinales (cuttlefish) (Ref. 0424)
Octopus vulgaris, Octopus ocellatus, Octopus minor (octopus) (Ref. 0424)
Salmo salar, Oncorhynchus sp. (Salmon) (Ref. 0419)
Paralithodes brevipes (crab) (Ref. 0469)
Wittig condensation between (3S)-3-hydroxy-4-oxo-C15-phosphonium salt and (3S)-3-Hydroxy-7,8-didehydro-4-oxo-12'-apo-b-carotenal provided 7,8-didehydroastaxanthin. (Ref. 0143)
Doatoxanthin a_right 7,8-didehydroastaxanthin Asterias rubens (Starfish) (Ref. 0420)
Diatoxanthin a_right 4,4'-dihydroxydiatoxanthin a_right 4-keto-4'-hydroxydiatoxanthin a_right 7,8-didehydroastaxanthin in Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)


50
7,8,7',8'-Tetradehydroastaxanthin
(3S,3'S)-3,3'-Dihydroxy-7,8,7',8'-tetradehydro-b,b-carotene-4,4'-dione
VCA0050
Masayoshi Ito
C40H48O4 592.807 Download ChemDraw structure file

216-218degC (Ref. 0143)
lmax (nm) (e): benzene 300 (16,818), 326 (16,820), 466sh (85,489), 493 (111,417), 524 (89,974) (Ref. 0143); CHCl3 300 (19,416), 330 (19,420), 498 (119,729), 526sh (99,666) (Ref. 0143)
nmax(KBr)/cm-1: 3495m (OH), 2160m (acetylene), 1669s (conj. C=O), 1580m, 1560m (conj. C=C), 1379m, 1365m (gem. dimethyl), 1079s (OH), 970s (trans CH=CH) (Ref. 0143)
1H-NMR d(400 MHz, CDCl3): 1.311, 1.355 (each 6H, s, 16,16',17,17'-Me), 1.805 (t, J 13.3, 2ax,2'ax-H), 1.811 (t, J 13.4, 2'ax-H), 1.984 (20,20'-Me), 2.026 (18,18'-Me), 2.048 19,19'-Me), 2.220 (dd, J 12.8, 5.6, 2eq,2'eq-H), 3.610 (d, J 1.5, 3,3'-OH), 4.33 (ddd, J 13.4, 5.6, 1.4, 3ax,3'ax-H), 6.34 (d, J 9, 14,14'-H), 6.44-6.65 (6H, 12,12',11,11',10,10'-H), 6.69 (dd, J 8,3, 15,15'-H) (Ref. 0143)
13C-NMR d(67.892 MHz, CDCl3): 12.80 (20,20'-Me), 14.31 (18,18'-Me), 17.62 (19,19'-Me), 26.28, 31.11 (16,16',17,17'-Me), 36.71 (1,1'C), 44.44 (2,2'C), 69.42 (3,3'C), 88.12, 110.87 (7,7',8,8'C), 117.76 (9,9'C), 124.04 (11,11'C), 131.14 (15,15'C), 133.84 (5,5'C), 134.78 (14,14'C), 136.77 (13,13'C), 138.87, 140.56 (10,10',12,12'C), 147.64 (6,6'C), 199.29 (4,4'C) (Ref. 0143)
m/z: 592 (75, M), 590 (57), 486 (7), 296 (20), 145 (40), 106 (47), 105 (49), 91 (100), 83 (52) (Ref. 0143)
CD: De 359 (+1.31), 313 (-4.45), 279sh (-3.2), 255 (+4.19) (Ref. 0143)
TLC [Kieselgel F254 (Merck); CH2Cl2-ether 4:1) Rf = 0.22 (Ref. 0143) HPLC (column: Spherisorb S 5-CN 0.31times50 cm, eluent: hexane/isopropyl ethanoate/2-propanol/N-ethyldiisopropylamine, 82.4:17:0.5:0.1, flow rate: 1 ml/min)
[Chromatogram 0021] --- di-(-)-camphanate tR = 1071 sec [all-E-(3R,3'S)], 1289 sec [all-E-(3S,3'S)] (Ref. 0420)
HPLC (column: Sperisorb S 5-CN 0.31times50 cm, eluent: hexane/isopropyl ethanoate/2-propanol/N-ethyldiiopropylamine 82.4:17:0.5:0.1, flow: 1.0 ml/min) Retention time: 798 sec (Ref. 0420)
Asterias rubens (Starfish) (Ref. 0420)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)
Watasenia scintilans, Sepia modokai, Sepia officinales (cuttlefish) (Ref. 0424)
Octopus vulgaris, Octopus ocellatus, Octopus minor (octopus) (Ref. 0424)
Salmo salar, Oncorhynchus sp. (Salmon) (Ref. 0419)
Paralithodes brevipes (crab) (Ref. 0469)
Wittig condensation between the C10-diphosphonium salt and (3S)-3-acyloxy-7,8-didehydro-4-oxo-C15-aldehyde provided 7,8,7',8'-tetradehydroastaxanthin. (Ref. 0143)
Alloxanthin a_right 7,8,7',8'-tetradehydroastaxanthin Asterias rubens (Starfish) (Ref. 0420)
Alloxanthin a_right 4,4'-dihydroxyalloxanthin a_right 4-keto-4'-hydroxyalloxanthin a_right 7,8,7',8'-tetradehydroastaxanthin in Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)


51
Alloxanthin/ Tetradehydrozeaxanthin / (Cynthiaxanthin)/ (Pectenoxanthin)
(3R,3'R)-7,8,7',8'-Tetradehydro-b,b-carotene-3,3'-diol
VCA0051
Masayoshi Ito
C40H52O2 564.840 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
186degC (Ref. 0145)
lmax (nm): hexane 480, 451 (Ref. 0145); ethanol 481, 452 (Ref. 0145); benzene (e) 492, 462 (131,000) (Ref. 0145); methanol
[Spectrum 1152]
nmax(KBr)/cm-1: 3350, 2170vw, 1560, 1450, 1050, 1020, 960, 950
1H-NMR d(CDCl3): 1.14, 1.19 (1-gem-Me), 1.90 (5-Me), 1.99 (9-Me), 1.94 (13-Me), 1.94 (13'-Me), 1.99 (9'-Me), 1.90 (5'-Me), 1.19, 1.14 (1'-gem-Me), 1.50 (2H, s), 2.29 (4H, d, J 7) (Ref. 0145)
13C-NMR d(CDCl3): 36.9 (1,1'C), 46.7 (2,2'C), 64.8 (3,3'C), 41.5 (4,4'C), 137.2 (5,5'C), 124.3 (6,6'C), 89.1 (7,7'C), 98.8 (8,8'C), 119.1 (9,9'C), 138.0 (10,10'C), 124.3 (11,11'C), 135.2 (12,12'C), 136.4 (13,13'C), 133.4 (14,14'C), 130.3 (15,15'C), 24.8 and 30.5 (1,1'-gem-Me), 22.4 (5,5'-Me), 18.0 (9,9'-Me), 12.7 (13,13'-Me) (Ref. 0061)
m/z: 564 (10, M), 549 (1), 546 (<0.5, M-18), 528 (<0.5, M-18-18), 472 (4, M-92), 457 (1), 406 (3), 105 (12), 92 (75), 91 (100) (Ref. 0145)
CD in EPA: De 210 (-7.0), 280 (-3.0), 325 (-1.8), 492 (0) (Ref. 0426)
255 (0), 290 (-2), 350 (+0.5) (Ref. 0518)

Cynthia roretzi (Sea squirt) (Ref. 0493)
Halocynthia roretzi (Sea suirt) (Ref. 0401/0402)
Mytilus edulis (Shell fish) (Ref. 0426)
Mytilus corusucus (Ref. 0427)
Patinopecten yessoensis (Scallop) (Ref. 0494)
Pecten maximus (Scallop) (Ref. 0496)
Scapharca broughtonii (Shell fish) (Ref. 0495)
Marine Shell Fishes (Ref. 0430)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)
Carassius auratus (gold fish) (integuments) (Ref. 0470)
Oncorhynchus masou macrostomus, Salmo gairdneri (trout) (Ref. 0473)
The Wittig reaction between the C10-dialdehyde and an excess of the 3-acetoxy-7,8-didehydro-C10-phosphonium salt in the presence of KOH in propan-2-ol at -30degC leads to the racemic all-E alloxanthin and its 9Z isomer. (Ref. 0145)



52
Diatoxanthin/ 7,8-Didehydrozeaxanthin
(3R,3'R)-7,8-Didehydro-b,b-carotene-3,3'-diol
VCA0052
Masayoshi Ito
C40H54O2 566.856 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
203degC (Ref. 0146)
lmax (nm): hexane 479, 450 (Ref. 0145); acetone 430, 453 (E 1%1cm=2720, e=154000), 480, %III/II=42 (Ref. 0146)
nmax(KBr)/cm-1: 3376s (OH), 3027-2825s (CH), 2171w (acetylene), 1446m, 1360m, 1050s, 959s (Ref. 0146)
1H-NMR d(CDCl3): 1.16, 1.21 (1-gem-Me), 1.91 (5-Me), 1.99 (9-Me), 1.96 (13-Me), 1.96 (13'-Me), 1.96 (9'-Me), 1.74 (5'-Me), 1.09 (1'-gem-Me), 1.50 (2H, s) (Ref. 0145)
1H-NMR d(CDCl3): 1.073 (16',17'-Me), 1.147 (16-Me), 1.200 (17-Me), 1.45 (m, 2ax-H), 1.48 (m, 27ax-H), 1.736 (18'-Me), 1.77 (m, 2'eq-H), 1.84 (m, 2eq-H), 1.923 (18-Me), 1.952 (20-Me), 1.968 (20'-Me), 1.975 (19'-Me), 2.005 (20-Me), 2.00-2.10 (m, 4ax,4'ax-H), 2.38 (dd, J 15.6, 5.4, 4'eq-H), 2.43 (dd, J 16.6, 4.4, 4eq-H), 4.00 (m, 3,3'-H), 6.10-6.25 (m, 7',8'-H), 6.16 (d, J 11.2, 10'-H), 6.25 (d, J 10.3, 14'-H), 6.27 (d, J 10.8, 14-H), 6.35 (d, J 14.8, 12-H), 6.36 (d, J 15.1, 12'-H), 6.46 (d, J 11.3, 10-H), 6.52 (dd, J 14.2, 11.3, 11-H), 6.62-6.68 (m, 11',15,15'-H) (Ref. 0146)
13C-NMR d(CDCl3): 12.8 (19',20,20'-Me), 18.1 (19-Me), 21.7 (18'-Me), 22.5 (18-Me), 28.7 (16,16'-Me), 30.3 (17,17'-Me), 36.6 (1C), 37.1 (1'C), 41.4 (4C), 42.5 (4'C), 46.7 (2C), 48.4 (2'C), 64.8 (3C), 65.2 (3'C), 89.0 (7C), 98.6 (8C), 118.9 (9C), 124.1 (11C), 124.2 (6C), 125.1 (11'C), 125.6 (7'C), 126.2 (14'C), 129.9 (15'C), 130.5 (15C), 131.3 (10'C), 132.5 (14'C), 133.5 (14C), 135.2 (10C), 135.8 (9'C), 136.1 (13'C), 136.8 (13C), 137.3 (5C), 137.5 (12'C), 137.7 (6'C), 138.1 (12C), 138.5 (8'C) (Ref. 0146)

CD: De 216 (-6.5), 224 (-5.9), 239 (0), 252 (+4.5), 264 (0), 289 (-10.1), 319 (0), 347 (+2.8) (Ref. 0146)

Halocynthia roretzi (Sea suirt) (Ref. 0401/0402)
Mytilus edulis (Shell fish) (Ref. 0426)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)
Carassius auratus (gold fish) (integuments) (Ref. 0470)
Oncorhynchus masou macrostomus, Salmo gairdneri (trout) (Ref. 0473)
Mytilus edulis (Shell fish) (Ref. 0426)
Mytilus corusucus (Ref. 0427)
Pecten maximus (Scallop) (Ref. 0238)
Patinopecten yessoensis (Scallop) (Ref. 0494)
Scapharca broughtonii (Shell fish) (Ref. 0495)
Marine Shell Fishes (Ref. 0430)
Bacillariophyceae (Diatoms) (Ref. 0497)
The Wittig reaction between the (3R)-3-hydroxy-C25-phosphonium salt and the (3R)-3-hydroxy-7,8-didehydro-C15-aldehyde in the presence of NaH in CH2Cl2 leads to (3R,3'R)-diatoxanthin (Ref. 0146).
Diatoxanthin - pectenolone (Pecten maximus) (Ref. 0238)


53
Fucoxanthinol
(3S,5R,6S,3'S,5'R,6'R)-5,6-Epoxy-3,3',5'-trihydroxy-6',7'-didehydro-5,6,7,8,5',6'-hexahydro-b,b-caroten-8-one
VCA0053
Masayoshi Ito
C40H56O5 616.870 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
lmax (nm): acetone (420), 445, (465) (Ref. 0148)
nmax(KBr)/cm-1: 3248s (OH), 3031-2734s (CH), 1929w (C=C=C), 1726w, 1650m (conj. C=O), 1606s, 1530w, 1385s (gem Me), 1294w, 1270w, 1149m, 1123m, 1071m, 1052m, 965w (trans CH=CH) (Ref. 0148)
1H-NMR d(CDCl3): 0.9631, 1.035 (1-gem-Me), 3.82 (3-H), 1.79 (4ax-H), 2.30 (4eq-H), 1.220 (5-Me), 2.60, 3.66 (7-H2), 1.943 (9-Me), 7.15 (10-H), 6.58 (11-H), 6.67 (12-H), 1.990 (13-Me), 6.41 (14-H), 6.64 (15-H), 6.75 (15'-H), 6.27 (14'-H), 1.990 (13'-Me), 6.35 (12'-H), 6.61 (11'-H), 6.12 (10'-H), 1.810 (9'-Me), 6.03 (8'-H), 1.336 (5'-Me), 4.32 (3'-H), 1.351, 1.070 (1'-gem-Me) (Ref. 0148) (Ref. 1309)


TLC [Kieselgel 60 (Merck Art. 7731)]: acetone-hexane 3:7, Rf = 0.08; acetone-hexane 1:1, Rf = 0.20 (Ref. 0148)
Tapes philippinarum (Clam) (Ref. 0403)
Psammechinus miliaris (sea-urchin) (Ref. 0500)
Algae (Ref. 0409)

Fucoxanthin - Fucoxanthinol in Psammechinus miliaris (sea-urchin) (Ref. 0500)
In lying hens, fucoxanthin in Fucus serratus (brown algae) is metabolized to fucoxanthinol, and then fucoxanthinol 3'-sulphate and paracentrone (Ref. 1309).


54
19'-Hydroxyfucoxanthin 19'-hexanoate/ 19'-Hexanoyloxyfucoxanthin
(3S,5R,6S,3'S,5'R,6'S)-5,6-Epoxy-3'-ethanoyloxy-19'-hexanoyloxy-3,5'-dihydroxy-6',7'-didehydro-5,6,7,8,5',6'-hexahydro-b,b-caroten-8-one
VCA0054
Masayoshi Ito
C48H68O8 773.049 Download ChemDraw structure file

lmax (nm): acetone 423, 450, (478) (Ref. 0149); acetone 445, (480) (Ref. 0151); methanol 443 (Ref. 0149)
nmax(KBr)/cm-1: 3400 (OH), 3040-2860 (CH), 1930 (allene), 1730 (C=O ester), 1660 (conj. C=O), 1640, 4580, 1530, 1460, 1380, 1360, 1250 (ester), 1200, 1160 (tert. OH), 1040 (OH and ester), 970 (trans CH=CH), 920, 730 (Ref. 0149)
1H-NMR d(CDCl3): 0.97, 1.04 (16, 17-Me), 1.20 (18-Me), 1.92 (19-Me), 1.96 (20, 20'-Me), 4.78 (19'-CH2), 1.37 (18'-Me), 1.10 (17'-Me), 1.26 (16'-Me), 2.66, 3.63 (each d, 7-CH2), 6.04 (8-H), 2.00 (OAc), 8.2 (ca 2H, t, J 7, CH2COO) (Ref. 0149)
m/z: 772 (M), M-18, M-20, M-34, M-36, M-60, M-78, M-96, M-110, M-114, M-116, M-132, M-134, M-150, M-174, M-194 (Ref. 0149)
m/z: 792 (0.2, M), 754 (0.4, M-18), 274 (59), 178 (100) (Ref. 0426)
CD spactrum in EPA
[Spectrum 0031] (Ref. 0150)
TLC [special plate]: hexane-acetone-iso propanol 68.5:30:1.5, Rf = 0.30 (Ref. 0426)
HPLC (nitrile columun, hexane-isopropyl acetate-acetone-methanol 77:17:7:0.5) Rt=6.53 (Ref. 0426)
Coccolithus huxleyi (haptophyte algae) (Ref. 0149)
Phaenocystis sp. (Prymnesiophcea algae) (Ref. 0498)
Mytilus edulis (Shell fish) (Ref. 0404)




55
19'-Hydroxyfucoxanthinol 19'-hexanoate/ 19'-Hexanoyloxyfucoxanthinol
(3S,5R,6S,3'S,5'R,6'R)-5,6-Epoxy-19'-hexanoyloxy-3,3',5'-trihydroxy-6',7'-didehydro-5,6,7,8,5',6'-hexahydro-b,b-caroten-8-one
VCA0055
Masayoshi Ito
C48H68O8 773.049 Download ChemDraw structure file

lmax (nm): acetone 444, 468 (Ref. 0426)

m/z: 730 (20, M), 712 (9, M-18), 111 (100) (Ref. 0426)

TLC [special plate]: hexane-acetone-iso propanol 68.5:30:1.5, Rf = 0.20 (Ref. 0426)
HPLC (nitrile columun, hexane-isopropyl acetate-acetone-methanol 77:17:7:0.5) Rt=10.08 (Ref. 0426)
Phaenocystis sp. (Prymnesiophcea algae) (Ref. 0498)
Mytilus edulis (Shell fish) (Ref. 0404)




56
19'-Hydroxyisomytiloxanthin 19'-hexanoate/ 19'-Hexanoyloxyisomytiloxanthin
(5R,6R,3'R)-19'-Hexanoyloxy-6,3'-dihydroxy-7',8'-didehydro-5,6,7,8-tetrahydro-b,b-carotene-3,8-dione
VCA0056
Masayoshi Ito
C46H64O6 712.997 Download ChemDraw structure file

lmax (nm): acetone 450, (470) (Ref. 0426)
1H-NMR (400 MHz, CDCl3) in mixture with excess isomytiloxanthin showed a singlet at d 4.95, attributed to 19'-CH2 (Ref. 0426)
m/z: 712 (2, M), 694 (2, M-18), 281 (100) (Ref. 0426)

TLC [SiO2]: 40% acetone in hexane, Rf = 0.68 (Ref. 0426)
HPLC (nitrile columun, hexane-isopropyl acetate-acetone-methanol 77:17:7:0.5) Rt=5.37 (Ref. 0426)
Mytilus edulis (Edible Mussel)(Ref. 0426)




57
19'-Hydroxyfucoxanthin 19'-butanoate/ 19'-Butanoyloxyfucoxanthin
(3S,5R,6S,3'S,5'R,6'S)-5,6-Epoxy-3'-ethanoyloxy-19'-butanoyloxy-3,5'-dihydroxy-6',7'-didehydro-5,6,7,8,5',6'-hexahydro-b,b-caroten-8-one
VCA0057
Masayoshi Ito
C46H64O8 744.996 Download ChemDraw structure file

lmax (nm): hexane (426), 446, 473 (Ref. 0147); acetone (423), 446, 472 (Ref. 0147); CHCl3 456, 481 (Ref. 0147)
nmax(KBr)/cm-1:3430s (OH), 2960s, 2930s, 2860s (CH), 1930w (C=C=C), 1730s (C=O, ester), 1660m (conj. C=O), 1610m, 1580w (C=C), 1530m, 1465s (CH2), 1380m, 1365m (CH3), 1250m (CO-O-C), 1190w, 1175m (tert. OH), 1080w, 1055w, 1030m (sec. OH), 970s (trans CH=CH) (Ref. 0147)
1H-NMR d(400 MHz, CDCl3): 1.354 (2ax-H), 1.500 (2eq-H), 3.820 (3-H), 1.785 (4ax-H), 2.324 (4eq-H), 2.603, 3.658 (7-H2), 7.149 (10-H), 6.590 (11-H), 6.673 (11-H), 6.415 (14-H), 6.663 (15-H), 1.037 (16ax-Me), 0.964 (17eq-Me), 1.222 (18-Me), 1.948 (19-Me), 1.999 (20-Me), 1.386 (2'ax-H), 1.976 (2'eq-H), 5.367 (3'H), 1.490 (4'ax-H), 2.263 (4'eq-H), 6.060 (8'-H), 6.308 (10'-H), 6.679 (11'-H), 6.422 (12'-H), 6.308 (14'-H), 6.749 (15'-H), 1.384 (16'ax-Me), 1.078 (17'eq-H), 1.378 (18'-Me), 4.810, 4.758 (19'-H2), 1.977 (20'-Me), 2.282 (t, J 7.4), 1.655 (sext., J 7.4), 0.942 (t, J 7.4) (COCH2CH2CH3) (Ref. 0028/0147)
13C-NMR d(CDCl3): 35.96, 36.27 (1,1'C), 47.08, 45.20 (2,2'C), 64.33, 67.86 (3,3'C), 41.67, 45.32 (4,4'C), 66.12, 72.70 (5,5'C), 67.05, 118.40 (6,6'C), 40.82, 201.67 (7,7'C), 197.86, 101.13 (8,8'C), 134.74, 129.49 (9,9'C), 138.96, 132.95 (10,10'C), 123.68, 124.51 (11,11'C), 144.86, 139.92 (12,12'C), 135.95, 137.67 (13,13'C), 136.40, 133.56 (14,14'C), 130.23, 132.20 (15,15'C), 25.04, 29.06 (16ax,16'ax-Me), 28.12, 31.85 (17eq,17'eq-Me), 21.16, 30.97 (18,18'-Me), 11.83, 59.20 (19-Me, 19'-CH2), 12.79, 12.93 (20,20'-Me) (Ref. 0028)
m/z: 744 (M, 0.8), 726 (M-18, 6), 710 (M-16-18, 2), 708 (M-18-18, 3), 666 (M-18-60, 0.9), 664 (M-80, 0.4), 656 (M-88, 0.5), 650 (M-16-18-60, 0.6), 648 (M-18-18-60, 0.7, 640 (M-16-88, 0.3), 638 (M-18-88, 0.2), 630 (1), 622 (M-16-18-88, 1), 620 (M-18-18-88, 0.6), 580 (M-16+60-88, 0.6), 562 (M-16-18-60-88, 0.7), 560 (M-18-18-60-88, 0.8), 536 (1), 298 (33), 221 (20), 195 (100) (Ref. 0147)
CD in EPA: De 218 (-0.4), 227 (0), 233 (+0.3), 243 (0), 271 (-0.5), 291 (0), 332 (+0.5), ca. 355-410 (0) (Ref. 0147)
HPLC (column: Si-5 4.6times250 mm, eluent: 20% acetone in hexane-0.1% MeOH, flow rate: 1.5 ml/min) Rt=19.2 min (Ref. 0147)
Mytilus edulis (Edible Mussel) (Ref. 0426)
Phaenocystis sp. (Prymnesiophcea algae) (Ref. 0498)




58
Echinenone/ (Myxoxanthin)
b,b-Caroten-4-one
VCA0058
Masayoshi Ito
C40H54O1 550.856 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217).
Native subunit cytochrome b6 is purified from a monomeric cytochrome b6f complex of Synechocystis sp. PCC 6803 (cyanobacterium), and it containes one echinenone, one chlorophyll a and two b-type hemes (Ref. 1098). The cytochrome b6f complex from the crtO-less mutant of Synechocystis sp. PCC 6803 contains b-carotene, b-cryptoxanthin or zeaxanthin insted of echinenone (Ref. 1335).
By feeding experiments of Pseudocentrotus depressus (sea urchin), echinenone increases the fertilization, hatching and survival rate, and decreases the malformation rates (Ref. 1285).
178-179degC (Ref. 0121)
187degC (Ref. 0139)
lmax (nm): cyclohexane 461 (E 1%1cm = 2110) (Ref. 0121); ethanol 466 (Ref. 0152); methanol 460 (Ref. 1222/1346); methanol
[Spectrum 1110]
nmax(KBr)/cm-1: 1657s (conj. CO), 1550m (C=C), 1003m, 966vs (trans CH=CH) (Ref. 0139)
1H-NMR d(300 MHz, CDCl3): allE-isomer, 6.23 (7-H), 6.17 (7'-H), 6.38 (8-H), 6.16 (8'-H), 6.28 (10-H), 6.15 (10'-H), 6.66 (11-H), 6.65 (11'-H), 6.44 (12-H), 6.36 (12'-H), 6.31 (14'-H), 6,25 (15-H), 6.64 (15'-H), 1.201 (16, 17-Me), 1.035 (16', 17'-Me), 1.880 (18-Me), 1.725 (18'-Me), 2.005 (19-Me), 1.981 (19'-Me), 1.984 (20-Me), 1.984 (20'-Me) (Ref. 0523)
1H-NMR d(300 MHz, CDCl3): 9'Z-isomer, 6.23 (7-H), 6.20 (7'-H), 6.38 (8-H), 6.68 (8'-H), 6.28 (10-H), 6.06 (10'-H), 6.66 (11-H), 6.77 (11'-H), 6.43 (12-H), 6.29 (12'-H), 6.31 (14'-H), 6,25 (15-H), 6.64 (15'-H), 1.201 (16, 17-Me), 1.035 (16', 17'-Me), 1.881 (18-Me), 1.762 (18'-Me), 2.005 (19-Me), 1.981 (19'-Me), 1.984 (20-Me), 1.984 (20'-Me) (Ref. 0523)
m/z: 564 (100, M), 458 (6) (Ref. 0152)(Ref. 0059)


Rhizobium lupini (soil and root nodule bacterium) (Ref. 0152)
Botryococcus braunii (Botryococcaceae, Chlorococcales) (Ref. 1081)
Synechocystis sp. PCC 6803 (Ref. 1222), Anabaena sp. PCC 7120, Anabaena variabilis IAM M3 and Nostoc punctiforme PCC 73102 (Ref. 1346), Gloeobacter violaceus (Ref. 1347) (cyanobacteria).
Psammechinus miliaris (Ref. 0500), Pseudocentrotus depressus (Ref. 0501), and 9-Z-Echinenone Pseudocentrotus depressus (sea-urchin) (Ref. 0523). Sea-urchins (Ref. 0410/0502/0503).
6-Ethylenedioxy-3,3-diemthyloctan-2-one, derived from the half-ester acid chloride of a,a-dimethylglutaric acid, was condensed with 8'-b-apo-carotenal, deprotected and then cylized with alkali to provide echinenone. (Ref. 0139)
4-Acetoxy-retinal was condensed with retinyltriphenylphosphonium sulfate to yield the acetate of isocryptoxanthin, which was saponified and then oxidized by the Oppenauer method to yield echinenone. (Ref. 0014/0121)
b-carotene - echinenone in Psammechinus miliaris (sea-urchin) (Ref. 0500)
in Pseudocentrotus depressus (sea-urchin) (Ref. 0501)
The b-carotene ketolase gene (crtO), which was isolated from the cyanobacterium Synechocystis PCC6803, encoded an enzyme catalyzing the conversion of b-carotene to echinenone (Ref. 1024/1222).

59
Neoxanthin
(3S,5R,6R,3'S,5'R,6'S)-5',6'-Epoxy-6,7-didehydro-5,6,5',6'-tetrahydro-b,b-carotene-3,5,3'-triol
VCA0059
Masayoshi Ito
C40H56O4 600.870 Download ChemDraw structure file
Component of LHC II in higher plants (Ref. 0154).
Crystal structure of spinach major light-harvesting complex (LHCII) contains 2 lutein, 1 9'-cis neoxanthin, 1 (violaxanthin, antheraxanthin or zeaxanthin), 8 chlorophyll a, and 6 chlorophyll b per monomer (Ref. 1291).
A light-harvesting pigment-protein complex (LHC) of Pseudoscourfieldia marina (Micromonadophyceae = Pracinophyceae) contains 5 prasinoxanthin, 2 neoxanthin, 1 unknown carotenoid, 9 Chl b, 6 Chl a, 2 MgDV (mol) (Ref. 1136).

Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217).
Singlet oxygen quenching activity (Ref. 0441) .
136-139degC (Ref. 0153)
lmax all-E form (nm) (e): ethanol 471 (137900), 442, (142810), 418 (96180), 329 (10560), 265 (33930) (Ref. 0153); benzene 482 (111520), 452 (117070), 426 (77590), 336 (8172), 274 (16450) (Ref. 0153)
lmax 9'-cis form: MeOH/water (9/1) 413, 435, 464 ; all-trans form: 417, 440, 470
[Spectrum 1111] (Ref. 0154)
lmax 9'-cis form: benzene 418, 442, 472 nm, %III/II=84; acetone 414, 438, 466 nm, %III/II=73 (Ref. 1182)
1H-NMR d(400 MHz, CDCl3) all-E form: 4.32 (m, 3-H), 3.92 (m, 3'-H), 2.27 (ddd, J 12.8, 4.1, 2.1, 4eq-H), 2.39 (ddd, J 14.2, 5.0, 1.8, 4'eq-H), 5.88 (d, J 15.5, 7'-H), 6.04 (s, 8-H), 6.30 (d, J 15.5, 8'-H), 6.12 (d, J 11.3, 10-H), 6.20 (d, J 11.6, 10'-H), 6.34 (d, J 15.6, 12-H), 6.38 (d, J 14.5, 12'-H), 6.25 (d, J 11.1, 14-H), 6.25 (d, J 11.1, 14'-H), 6.63 (m, 15-H), 6.63 (m, 15'-H), 1.07 (16-Me), 0.98 (16'-Me), 1.34 (17-Me), 1.16 (17'-Me), 1.35 (18-Me), 1.19 (18'-Me), 1.81 (19-Me), 1.93 (19'-Me), 1.97 (20-Me), 1.97 (20'-Me) and 9'-Z form (Ref. 0153)
1H-NMR d(400 MHz, CDCl3 and CD3OD) 9'-E form (Ref. 1182)
1H-NMR d (500 MHz, CDCl3) 9'-cis form: ca. 1.93 (2eq-H), 1.63 (dd, 2'eq-H), 1.36 (2ax-H), 1.235 (d, J 3.0, 2'-ax-H), 4.32 (m, 3-H), 1.29 (d, J 1.5, 3-OH), 3.92 (m, 3'-H), ca. 1.26 (3'-OH), 2.263 (ddd, J 12.9, 4.1, 2.1, 4eq-H), 2.408 (ddd, J 14.3, 5.0, 1.8, 4'eq-H), 1.406 (4ax-H), 1.66 (dd, 4'ax-H), 5.935 (d, J 15.5, 7'-H), 6.032 (s, 8-H), 6.836 (d, J 15.5, 8'-H), 6.116 (d, J 10.5, 10-H), 6.075 (d, J 11.5, 10'-H), 6.544 (dd, J 11.5, 15.0, 11-H), 6.759 (dd, J 11.8, 14.8, 11'-H), 6.339 (d, J 15.0, 12-H), 6.292 (d, J 15.0, 12'-H), 6.242 (d, J 9.5, 14-H), 6.242 (d, J 9.5, 14'-H), 6.62 (m, 15-H), 6.62 (m, 15'-H), 1.068 (16-Me), 1.008 (16'-Me), 1.334 (17-Me), 1.165 (17'-Me), 1.350 (18-Me), 1.255 (18'-Me), 1.800 (19-Me), 1.933 (19'-Me), 1.957 (20-Me), 1.963 (20'-Me) (Ref. 0154)
FD-MS m/z: 600 (Ref. 0154)
CD in EPA all-E form: De 219 (0), 225 (-1.8), 243 (-0.7), 265 (-2.8), 293 (-0.6), 311 (-0.8), ca. 350 (+0.1) (Ref. 0153)
CD in EtOH: De 227 (-2.7), 241 (-1.28), 266 (-4.77), 303 (-0.57), 313 (-0.77), 335 (0), 341 (+2.4), ca. 359 (0), 377 (+3.9), 400 (+0.68), 419 (+0.79), 441 (+1.17), 463 (+0.71) ca. 479 (0) (Ref. 0153)
Excited-state dynamics of all-trans and 9'-cis neoxanthin were investigated using the fluorescence up-conversion method: their absorption spectra and the fluorescence lifetimes of the second singlet excited-state were the same (Ref. 1112).
HPLC, mBondapak C18 column (8*100 mm, RCM type, Waters), eluent methanol/water 9/1, 2.0 ml/min: all-trans form 7.9 min, 9'-cis form 8.5 min (Ref. 0154)
HPLC of Mesostigma viride (Prasinophyceae) (Ref. 1250)
Major carotenoids of oxygenic phototrophs: the 9'-cis form, but not the all-trans form, is found in chloroplasts of seed plants, ferns, mosses and green algae, all of which contain chlorophylls a and b. In contrast, neoxanthin is not found in other algal classes, such as Heterokontophyta, Rhodophyta and onygenic phototrophic prokaryotes. In non-photosynthetic organs, such as petals and fruits, the presence of neoxanthin is classified into four types; those having only the 9'-cis form, those with only the all-trans form, those with both forms, and those without either form (Ref. 0154).
Botryococcus braunii (Green algae) (Ref. 1081) Higher plants (Ref. 0409) green algae (Ref. 0409) Prasinophytes (algae) (Ref. 0513)
The optically active 3-hydroxy-5,6-epoxy-C15-aldehyde was reacted with the acetylenic C10-diphosphonate and the resulting C25-phosphonate was next condensed with the optically active C15-allenic aldehyde to give the 15,15'-didehydro-neoxanthin which, after partial hydrogenation and isomerization, gave all-E neoxanthin. (Ref. 0019)
All-trans neoxanthin is the substrate of violaxanthin de-epoxidase, but 9'-cis neoxanthin is not (Ref. 1143/1144).
9-Cis epoxy-carotenoids (9'-cis neoxanthin and 9-cis violaxanthin) are cleaved to xanthoxin, which is a precursor of abscisic acid (plant hormone), by nine-cis epoxy-carotenoid dioxygenase (NCED) or neoxanthin cleavage enzyme (NCE) of maize and tomato (Ref. 1157/1158/1159). Similar enzyme, carotenoid cleavage dioxygenase (CCD), cleaves carotenoids symmetrically to produce a C14 dialdehyde and two C13 products (Ref. 1159).
[Table 1029]
A gene for neoxanthin synthase (NSY and NXS) is cloned and functionaly identified from Lycopersicum esculentum (tomato) and Solanum tuberosum (potato), respectively, and both have homology to lycopene b-cyclase (CrtL-b or LCY-b) and capsanthin capsorubin synthase (CCS) (Ref. 1125/1126). This enzyme synthesises neoxanthin from violaxanthin, but it seems not to have isomerise activity, all-trans form to 9-cis form (S. Takaichi).
All-trans form is isolated from pumpkin fruit, and 9'-cis from leaves (Ref. 0154/1112).
Mesostigma viride (Prasinophyceae) has only all-trans form not 9'-cis form (Ref. 1250).
60
Violaxanthin
(3S,5R,6S,3'S,5'R,6'S)-5,6:5',6'-Diepoxy-5,6,5',6'-tetrahydro-b,b-carotene-3,3'-diol
VCA0060
Masayoshi Ito
C40H56O4 600.870 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
Singlet oxygen quenching activity (Ref. 0441)
Fucoxanthin-chlorophyll a/c-protein assembly (FCPA) with energy transfer activity from fucoxanthin to chlorophyll a and from chlorophyll c to chlorophyll a isolated from Dictyota dichotoma (brown alga); 10 fucoxanthin, 1 violaxanthin, no b-carotene, 3 chlorophyll c, 13 chlorophyll a and a 54 kDa protein to form a 4.8 S complex (Ref. 1115).
198-199degC (Ref. 0155)
lmax (nm) (e): EPA 265.5 (37500), 414.5 (102600), 437 (152500), 467 (150000) (Ref. 0155); methanol 326, 415, 436, 466, %III/II=89.9
[Spectrum 1112] (Ref. 1052)
1H-NMR d(400 MHz, CDCl3): 0.98 (s, 16-Me), 1.16 (s, 17-Me), 1.19 (s, 18-Me), 1.25 (dd, J 12.5, 11, 2ax-H), 1.63 (dd, J 14.5, 8.8, 4ax-H), 1.63 (ddd, J 12.5, 3.5, 1.8, 2eq-H), 1.93 (s, 19-Me), 1.97 (s, 20-Me), 2.39 (ddd, J 14.3, 5, 1.8, 4eq-H), 3.92 (m, 3-H), 5.88 (d, J 15.5, 7-H), 6.20 (d, J 11, 10-H), 6.27 (m, 14-H), 6.30 (d, J 15.5, 8-H), 6.37 (d, J 15, 12-H), 6.61 (dd, J 15, 11, 11-H), 6.64 (m, 15-H) (Ref. 0155)
13C-NMR d(CDCl3, 25.16 MHz): 35.49 (1), 47.93 (2), 63.19 (3), 41.86 (4), 67.19 (5), 70.55 (6), 125.51 (7), 137.52 (8), 134.86 (9), 132.70 (10), 125.45 (11), 138.62 (12), 138.62 (13), 133.56 (14), 130.94 (15), 25.45 (16), 29.76 (17), 20.39 (18), 13.07 (19), 12.86 (20) (Ref. 0061/0156) 15-cis form (Ref. 0156)
CI-MS m/z: 601 (57, M+1), 583 (36, M+1-H2O), 565 (22, M-2H2O), 510 (35), 509 (M+1-toluene), 491 (30), 232 (15), 211 (27), 181 (100), 165 (21), 121 (20) (Ref. 0155)
FD-MS m/z: 600 (100%) (Ref. 1053)
CD in EPA: De 212.5 (-6.2), 217.8 (0), 230 (+9.8), 240 (0), 264.5 (-27.9), 292 (0), 325 (5), 347 (0) (Ref. 0155); figure (Ref. 1235)

Botryococcus braunii (Green alage) (Ref. 1081)
Higher plants (Ref. 0409)
Prasinophytes (algae) (Ref. 0513)
The optically active 3-hydroxy-5,6-epoxy-C15-aldehyde was reacted with the acetylenic C10-diphosphonate to give the 15,15'-didehydro-violaxanthin which, after hydrogenation and iomerization, gave all-E violaxanthin. (Ref. 0019/0155)
zeaxanthin -> antheraxanthin -> violaxanthin (xanthophyll-cycle) in plant (Ref. 0512).
Xanthophyll cycle is catalyzed by violaxanthin de-epoxidase, which is present in lumen of chloroplast in plant leaves, and whose pH optimum is pH 5.2 and requires ascorbate. pI is 5.4 (Ref. 1141).
All-trans violaxanthin is the substrate of violaxanthin de-epoxidase, but cis forms are not (Ref. 1143/1144).
9-Cis epoxy-carotenoids (9'-cis neoxanthin and 9-cis violaxanthin) are cleaved to xanthoxin, which is a precursor of abscisic acid (plant hormone), by nine-cis epoxy-carotenoid dioxygenase (NCED) or neoxanthin cleavage enzyme (NCE) of maize and tomato (Ref. 1157/1159). Similar enzyme, carotenoid cleavage dioxygenase (CCD), cleaves carotenoids symmetrically to produce a C14 dialdehyde and two C13 products (Ref. 1159).
[Table 1030]
The zeaxanthin epoxidase gene, which was isolated from higher plants, Nicotiana plumbaginifolia and Capsicum annuum (red pepper), encoded an enzyme catalyzing the conversion of zeaxanthin to violaxanthin by way of antheraxanthin under the presence of O2, ferredoxin, and NADPH-ferredoxin redactase (Ref. 1025/1026).
A gene of violaxanthin de-epoxidase, which catalyzes the conversion of violaxanthin to zeaxanthin by way of antheraxanthin (xanthophyll cycle), is cloned from romaine lettuce and expressed in Escherichia coli (Ref. 1142).
Review of characteristics of zeaxanthin epoxidase and violaxanthin de-epoxidase (Ref. 1268)
Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed in order to predict their stable structures (Ref. 1337).
61
Cycloviolaxanthin
(3S,5R,6R,3'S,5'R,6'R)-3,6:3',6'-Diepoxy-5,6,5',6'-tetrahydro-b,b-carotene-5,5'-diol
VCA0061
Masayoshi Ito
C40H56O4 600.870 Download ChemDraw structure file

Anti-oxidative activity (Ref. 1096)
lmax (nm): dioxan 332.2, 422.8, 446.4 476.8 (Ref. 0508); benzene 427, 453, 483 (Ref. 0509)
1H-NMR d(600 MHz, CDCl3): 0.897 (6H, s 17,17'-Me), 1.226 (6H, s, 18,18'-Me), 1.447 (6H, s 16,16'-Me), 1.623 (2H, d, J 11.4, 2, 2'-Hendo), 1.685 (2H, d, J 12.1, 4, 4'-Hendo), 1.85 (2H, ddd, J 11.6, 6, 2.4, 2, 2'-Hexo), 1.961 (6H, s, 19, 19'-Me), 1.977 (6H, s, 20,20'-Me), 2.067 (2H, ddd, J 12.2, 6.1, 2.5, 4, 4'-Hexo), 4.402 (2H, t, J 6, 3,3'-H), 5.750 (2H, d, J 16.1, 7,7'-H), 6.207 (2H, d, J 11.1, 10,10'-H), 6.268 (2H, br. d, 14,14'-H), 6.367 (2H, d, J 15.0, 12,12'-H), 6.385 (2H, d, J 15.8, 8,8'-H), 6.62 (4H, m, 11,11',15,15'-H) (Ref. 0508)
13C-NMR d(100.6 MHz, CDCl3): 12.81 (C20, 20'), 12.85 (C19,19'), 25.73 (C17, 17'), 25.85 (C16, 16'), 31.60 (C18, 18'), 32.17 (C16, 16'), 44.01 (C1, 1'), 47.75 (C4, 4'), 48.53 (C2, 2'), 75.37 (C3, 3'), 82.50 (C5, 5'), 91.66 (C6, 6'), 124.83 (C11, 11'), 122.84 (C7, 7'), 130.11 (C15, 15'), 131.62 (C10, 10'), 132.67 (C14, 14'), 134.77 (C8, 8'), 134.89 (C9, 9'), 136.43 (C13, 13'), 137.81 (C12, 12') (Ref. 0509)
m/z: 600, 520, 221, 181(Ref. 0508)
CD in EPA: De 237 (-0.80), 272 (+0.81), 331 (-1.03), 417 (-1.13), 425 (-0.82), 446 (-1.84), 460 (-0.98), 472(-1.80) (Ref. 0508/0509)

Capsicum annuum (Red paprika) (Ref. 0508/0505)

Violaxanthin - cycloviolaxanthin in Capsicum annuum (Ref. 0511)
Antheraxanthin - cucurbitaxanthin A - cucurbitaxanthin B - cycloviolaxanthinin in Capsicum annuum (Ref. 0511)


62
Cucurbitaxanthin A
(3R,3'S,5'R,6'R)-3',6'-Epoxy-5',6'-dihydro-b,b-carotene-3,5'-diol
VCA0062
Masayoshi Ito
C40H56O3 584.871 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
Anti-tumore promoting effect (Ref. 1095)
lmax (nm): benzene 487, 457, 434 (Ref. 0505); ether 423, 445, 473(Ref. 0510)
nmax(KBr)/cm-1: 3360m (OH), 2900s, 2850m, 1440w, 1379w, 1352w, 1292w, 1238w, 1085m, 1034m, 956s, 870w, 820w (Ref. 0510)
1H-NMR d(400 MHz, CDCl3): 0.88 (3H, s, 17-Me), 1.07 (6H, s, 16', 17'-Me), 1.21 (3H, s, 18-Me), 1.43 (3H, s, 16-Me), 1.48 (1H, dd, J 12.0, 2'-Hax), 1.61 (1H, d, J 11.6, 2-Heq), 1.67 (1H, d, J 12.1, 4-Heq), 1.73 (3H, s, 18'-Me), 1.77 (1H, ddd, J 12.0, 3.6, 2.1, 2'-Heq), 1.84 (1H, ddd, J 11.5, 6, 2.2, 2-Hax), 1.95 (3H, s, 19-Me), 1.96 (9H, s, 20, 19', 20'-Me), 2.04 (1H, dd, J 16.1, 9.8 4'-Hax), 2.06 (1H, ddd, J 12.1, 6.0, 2.2, 4-Hax), 4.00 (1H, m, 3'-H), 4.39 (1H, t, J 6.0, 3-H), 5.74 (1H, d, J 16.1, 7-H), 6.09 (1H, AB, J 16.8, 7'-H), 6.14 (1H, AB, J 16.8, 8'-H), 6.15 (1H, d, J 11.3, 10'-H), 6.20 (1H, d, J 11.4, 10-H), 6.25 (1H, m, 14, 14'-H), 6.36 (2H, d, 12, 12'-H), 6.37 (1H, d, J 16.1, 8-H), 6.62 (1H, dd, J 11.4, 14.7, 11-H), 6.63 (2H, m, 15, 15'-H), 6.64(1H, dd, J 11.3, 14.1, 11'-H) (Ref. 0505/0510)
13C-NMR d(100.6 MHz, CDCl3): 12.75 (C20'), 12.80 (C19), 12.81 (C19'), 12.84 (C20), 21.62 (C18'), 25.72 (C16), 25.72 (C16'), 30.25 (C17'), 31.58 (C18), 32.16 (C17), 37.12 (C1'), 42.56 (C4'), 43.98 (C 1), 47.71 (C4), 48.43 (C2'), 48.50 (C2), 65.09 (C3'), 70.37 (C3), 82.48 (C5), 91.64 (C6), 122.83 (C7), 124.81 (C11), 124.91 (C11'), 125.56 (C7'), 126.15 (C5'), 130.05 (C15), 130.10 (C15'), 131.31 (C10'), 131.60 (C10), 132.58 (C14), 132.66 (C14'), 134.77 (C8), 134.86 (C9), 135.40 (C13), 136.40 (C9'), 136.49 (C13'), 137.57 (C12), 137.76 (C12'), 137.78 (C6'), 138.50 (C8') (Ref. 0505/0510)
m/z: 584 (33, M), 566 (3, M-H2O), 504 (6), 492 (2), 299 (7), 286 (16), 221 (29), 181 (239, 160 (39), 155 (30), 119 (53), 105 (43), 55 (35), 105 (43), 55 (35), 43(100) (Ref. 0505/0510)
CD in EPA: De 230 (+3.08), 278 (-6.15), 390 (-11.32), 426 (+2.38), 476 (-1.51) (Ref. 0505) CD in EPA: De 223 (0), 239 (+2.3), 254 (0), 275 (-7.6), 305 (-1.5), 335 (-2.1) (Ref. 0510)

Cucurbita maxima (Pumpkin) (Ref. 0510)
Capsicum annuum (Red paprika) (Ref. 0504/0508/0505/0506/0511)

Antheraxanthin - cucurbitaxanthin A in Capsicum annuum (Ref. 0511)
Changes in carotenoid composition and content during ripening of selective cultivars for paprika (Capsicum annuum) production (Ref. 1271).

Note: Left and right end groups on the chemical structure have been reversed.
63
Cucurbitaxanthin B
(3S,5R,6S,3'S,5'R,6'R)-5,6:3',6'-Diepoxy-5,6,5',6'-tetrahydro-b,b-carotene-3,5'-diol
VCA0063
Masayoshi Ito
C40H56O4 600.870 Download ChemDraw structure file

lmax (nm): benzene 483, 453, 427 (Ref. 0505); ether 415, 438, 468(Ref. 0510)
nmax(KBr)/cm-1: 3360m (OH), 2900s, 2850m, 1440w, 1379w, 1352w, 1292w, 1238w, 1085m, 1034m, 956s, 870w, 820w (Ref. 0510)
1H-NMR d(400 MHz, CDCl3): 0.88 (3H, s, 17-Me), 0.98 (3H, s, 16'-Me), 1.15 (3H, s, 17'-Me), 1.19 (3H, s, 18'-Me), 1.21 (3H, s, 18-Me), 1.24 (1H, m, 2-Hax), 1.43 (3H, s 16-Me), 1.61 (1H, d, J 11.6, 2-Heq), 1.67 (1H, d, J 12.1, 4-Heq), 1.73 (3H, s, 18'-Me), 1.77 (1H, ddd, J 12.0, 3.6, 2.1, 2'-Heq), 1.84 (1H, ddd, J 11.5, 6, 2.2, 2-Hax), 1.93 (3H, s, 19'-Me), 1.95 (3H, s, 19-Me), 1.96 (6H, s 20, 20'-Me), 2.06 (1H, ddd, J 12.1, 6.0, 2.2, 4-Hax), 2.39 (1H, ddd, J 14.3, 5.2, 1.8, 4-Heq), 3.91 (1H, m, 3'-H), 4.39 (1H, t, J 6.0, 3-H), 5.74 (1H, d, J 16.1, 7-H), 5.88 (1H, d, J 15.5, 7'-H), 6.20 (1H, d, J 11.4, 10'-H), 6.21 (1H, d, J 11.4, 10-H), 6.26 (2H, m, 14, 14'-H), 6.29 (1H, d, J 15.5, 8'-H), 6.36 (1H, d, J 14.7, 12-H), 6.37 (1H, d, J 16.1, 8-H),6.37 (1H, d, J 14.7, 12'-H), 6.60 (1H, dd, J 11.5, 14.7, 11'-H), 6.61 (1H, dd J 11.5, 14.7, 11-H), 6.63 (2H, m, 15, 15'-H) (Ref. 0505/0510)
13C-NMR d(100.6 MHz, CDCl3): 12.9 (C19, 19', 20, 20'), 20.1 (C18'), 25.1 (C16'), 25.9 (C16), 29.7 (C17'), 31.8 (C18), 32.3 (C17), 41.3 (C4'), 47.9 (C2'), 48.2 (C4), 48.9 (C2), 65.0 (C3'), 123.0 (C7), 123.9 (C7'),124.7 (C11'), 124.8 (C11), 130.1 (C15, 15'), 132.2 (C10, 10'), 132.8 (C14, 14'), 135.0 (C8), 137.6 (C8'), 138.3 (C12,12') (Ref. 0505)
m/z: 600 (50, M), 582 (9, M-H2O), 564 (3, M-2H2O), 520 (21), 508 (21), 287 (36), 286 (32), 221 (100), 181 (57), 160 (45), 155 (26), 119 (32), 105 (26), 55 (10), 43 (25) (Ref. 0505/0510)
CD in EPA: De 228 (+2.13), 267 (-5.77), 327 (+0.94) (Ref. 0505)CD in EPA: De 210 (-6.8), 225 (0), 230 (+3.0), 236 (0), 267 (-19.0), 309 (0), 327 (+2.0), 340 (0) (Ref. 0510)

Cucurbita maxima (Pumpkin) (Ref. 0510)
Capsicum annuum (Red paprika) (Ref. 0508/0505/0506)

Antheraxanthin -> cucurbitaxanthin A -> cucurbitaxanthin B in Capsicum annuum (Ref. 0511)
Cucurbitaxanthin B is the substrate of violaxanthin de-epoxidase (Ref. 1143).

Note: Left and right end groups on the chemical structure have been reversed.
64
4-Oxomytiloxanthin
3,3',8'-Trihydroxy-7,8-didehydro-b,k-carotene-4,6'-dione
VCA0064
Masayoshi Ito
C40H52O5 612.838 Download ChemDraw structure file

lmax (nm): hexane/isopropyl ethanoate/acetone (76:17:7, v/v) 447, 473, 502 (Ref. 0420)
1H-NMR d(400 MHz, CDCl3): 0.852 (3H, s 16'-Me), 1.191 (3H, s 17'-Me), 1.311 (3H, s, 16-Me), 1.351 (3H, s 18'-Me), 1.355 (3H, s, 17-Me), 1.55 (1H, dd, J 14.3, 3, 4'-Hb), 1.72 (1H, dd, J 13.5, 4.5, 2'-Hb), 1.80 (1H, t, J 13, 2-Hax), 1.990 (3H, s, 19'-Me), 1.984 (3H, s, 20-Me), 2.004 (3H, s, 20'-Me), 2.052 (3H, s, 19-Me), 2.027 (3H, s, 18-Me), 2.09 (1H, dd, J 13.5, 7.5, 2'-Ha), 2.22 (1H, dd, J 12.8, 5.5, 2-Heq), 2.88 (1H, dd, J 14.3, 8.5, 4'-Ha), 4.33 (1H, ddd, J 14, 6, 1.8, 3-H), 4.53 (1H, m, 3'-H), 5.862 (1H, s, 7'-H), 6.34-7.24 olefinic H (Ref. 0420)
m/z: 612(1, M), 594 (1, M-H2O), 576 (1, M-2H2O), 413 (2), 383 (2), 83 (64), 41 (100) (Ref. 0420)

HPLC (columun: Sherisorb S 5-CN, detection : 450nm, mobile phase: hexana/isopropyl ethanoate/2-propanol/N-ethyldiisopropylamine 82.4:17:0.5:0.1 (v/v), flow rate : 1 mL/min. 7,8,7',8'-tetradehydroastaxanthin tR=798 sec, 7,8-didehydroastaxanthin tR=914 sec, astaxanthin tR=1042 sec, 4-oxomytiloxanthin tR=1712 sec) (Ref. 0420)
Asterias rubens (Starfish) (Ref. 0420)

Mytiloxanthin - 4-oxomytiloxanthin in Asterias rubens (Starfish) (Ref. 0420)


65
4-Hydroxymytiloxanthin
(3S,4S,3'S,5'R)-3,4,3',8'-Tetrahydroxy-7,8-didehydro-b,k-caroten-6'-one
VCA0065
Masayoshi Ito
C40H54O5 614.854 Download ChemDraw structure file

lmax (nm): ether 470 (Ref. 0423)
1H-NMR d(300 MHz, CDCl3): 0.852 (3H, s 16'-Me), 1.191 (9H, s 16, 17, 17'-Me), 1.351 (3H, s 18'-Me), 1.55 (1H, dd, J 14.3, 3, 4'-Hb), 1.72 (1H, dd, J 13.5, 4.5, 2'-Hb), 1.995 (3H, s, 19'-Me), 1.978 (3H, s, 20-Me), 2.001 (3H, s, 20'-Me), 2.006 (3H, s, 18-Me), 2.016 (3H, s, 19-Me), 2.09 (1H, dd, J 13.5, 7.5, 2'-Ha), 2.88 (1H, dd, J 14.3, 8.5, 4'-Ha), 3.78 (1H, m, 3-H), 4.53 (1H, m, 3'-H), 5.862 (1H, s, 7'-H), 6.34-7.24 olefinic H, 16.288 (1H, s, enol-H) (Ref. 0423)
m/z: 614.3992 (M C40H54O5) (Ref. 0423)
CD in EPA: De 225 (-1.0), 298 (+1.8), 350 (-0.8) (Ref. 0423)

Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)

Mytiloxanthin - 4-hydroxymytiloxanthin - 4-oxomytiloxanthin in Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)


66
Pectenolone
(3S,3'R)-3,3'-Dihydroxy-7',8'-didehydro-b,b-caroten-4-one
VCA0066
Masayoshi Ito
C40H52O3 580.839 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
lmax (nm): petroleum ether 459-462 (Ref. 0494/0496)
nmax(KBr)/cm-1: 3300m (OH), 2165w (acetylene), 1660s (conj. carbonyl), 960s (Ref. 0494/0496)
1H-NMR d(80 MHz, CDCl3): 1.14 (3H, s, 16'-Me), 1.20 (6H, s, 16, 17'-Me), 1.32 (3H, s 17-Me), 1.94 (12H, s, 18, 20, 18', 20'-Me), 1.99 (6H, s, 19, 19'-Me), 4.00 (1H, m, 3'-H), 4.35 (1H, dd, 3-H), 6.1-6.8 olefinic H (Ref. 0494/0495/0496)
13C-NMR d(50 MHz, CDCl3): 36.6 (C-1), 45.4 (C-2), 69.2 (C-3), 200.4 (C-4), 126.8 (C-5), 162.3 (C-6), 123.2 (C-7), 142.4 (C-8), 134.4 (C-9), 135.1 (C-10), 124.4 (C-11), 139.8 (C-12), 136.7 (C-13), 133.9 (C-14), 130.8 (C-15), 26.2 (C-16), 30.8 (C-17), 14.0 (C-18), 12.6 (C-19)< 12.8 (C-20), 36.8 (C-1'), 46,7 (C-2'), 64.9 (C-3'), 41.5 (C-4'), 137.4 (C-5'), 124.2 (C-6'), 89.2 (C-7'), 98.6 (C-8'), 119.2 (C-9'), 138.0 (C-10'), 124.4 (C-11'), 135.3 (C-12'), 136.4 (C-13'), 133.3 (C-14'), 130.2 (C-15'), 28.8 (C-16'), 30.5 (C-17'), 22.5 (C-18'), 18.1 (C-19'), 12.8 (C-20') (Ref. 0516)
m/z: 580 (M) , 562 (M-18), 544 (M-18-18), 488, 474 (Ref. 0494/0496)
CD in EPA: De 222 (0), 234 (-5.9), 244 (0), 263 (+7.0), 271 (0), 302 (-11.8), 327 (0), 350 (+1.3), 387 (0) (Ref. 0516)

Patinopecten yessoensis (Scallop) (Ref. 0494)
Pecten maximus (Scallop) (Ref. 0496)
Scapharca broughtonii (Shell fish) (Ref. 0495)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)

Diatoxanthin - Pectenol A and B - Pectenolonein Mytilus coruscus (Sea Mussel) (Ref. 0518)


67
Pectenol A/ (Pectenol)
(3S,4R,3'R)-7',8'-Didehydro-b,b-carotene-3,4,3'-triol
VCA0067
Masayoshi Ito
C40H54O3 582.855 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
lmax (nm): petroleum ether 425 (sh), 451, 479 (Ref. 0427/0517/0518)
nmax(KBr)/cm-1: 3300m (OH), 2165w (acetylene), 960s (Ref. 0427)
1H-NMR d(80 MHz, CDCl3): 1.06 (3H, s, 16-Me), 1.08 (3H, s, 17-Me), 1.14 (3H, s, 16'-Me), 1.20 (3H, s, 17'-Me), 1.89 (3H, s 18-Me), 1.92 (3H, s, 18'-Me), 1.96 (9H, s, 19, 20, 20'-Me), 4.00 (3H, m, 3, 4, 3'-H), 6.1-6.8 olefinic H (Ref. 0427)
1H-NMR d(300 MHz, CDCl3): 1.068 (3H, s, 16-Me), 1.091 (3H, s, 17-Me), 1.147 (3H, s, 16'-Me), 1.201 (3H, s, 17'-Me), 1.896 (3H, s 18-Me), 1.924 (3H, s, 18'-Me), 1.956 (3H, s, 20-Me), 1.967 (3H, s, 19-Me), 1.977 (3H, s, 20'-Me), 2.006 (3H, s, 19'-Me), 3.87 (1H, m 3-H), 3.96 (1H, d, J 3.5, 4-H), 3.99 (1H, m, 3'-H), 6.1-6.8 olefinic H (Ref. 0517/0518)
m/z: 582 (M) , 564 (M-18), 562 (M-18-18), 546, 528, 490, 476 (Ref. 0427/0517)
CD in EPA: De 224 (-5.6), 235 (0), 246 (+5.6), 262 (0), 285 (-10.9), 310 (0), 340 (+3.7) (Ref. 0517)

Mytilus coruscus (Sea Mussel) (Ref. 0427/0517/0518)
Patinopecten yessoensis (Scallop) (Ref. 0494)
Scapharca broughtonii (Shell fish) (Ref. 0495)
Marine Shell Fishes (Ref. 0430)
Mytilus edulis (Edible Mussel) (Ref. 0426)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)
Partial synthesis of pectenol A by NaBH4 reduction of pectenolone was discribed. (Ref. 0517/0518)
Diatoxanthin - Pectenol A and B - Pectenolonein Mytilus coruscus (Sea Mussel) (Ref. 0518)


68
Pectenol B
(3S,4S,3'R)-7',8'-Didehydro-b,b-carotene-3,4,3'-triol
VCA0068
Masayoshi Ito
C40H54O3 582.855 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
lmax (nm): ether 425 (sh), 451, 479 (Ref. 0518)
nmax(KBr)/cm-1: 3300m (OH), 2165w (acetylene), 960s (Ref. 0518)
1H-NMR d(300 MHz, CDCl3): 1.078 (3H, s, 16-Me), 1.094 (3H, s, 17-Me), 1.147 (3H, s, 16'-Me), 1.201 (3H, s, 17'-Me), 1.813 (3H, s 18-Me), 1.925 (3H, s, 18'-Me), 1.957 (3H, s, 20-Me), 1.966 (3H, s, 19-Me), 1.977 (3H, s, 20'-Me), 2.006 (3H, s, 19'-Me), 3.79 (1H, m 3-H), 3.94 (1H, d, J 7.5, 4-H), 3.99 (1H, m, 3'-H), 6.1-6.8 olefinic H (Ref. 0518)
m/z: 582.4055 (M, C4054O3) , 564 (M-18), 562 (M-18-18), 546, 528, 490, 476 (Ref. 0518)
CD in EPA: De 224 (-9.0), 235 (0), 246 (+6.0), 262 (0), 285 (-21.5), 310 (0), 340 (+2.0) (Ref. 0518)

Mytilus coruscus (Sea Mussel) (Ref. 0427/0517/0518)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)
Partial synthesis of pectenol B by NaBH4 reduction of pectenolone was discribed. (Ref. 0517/0518)
Diatoxanthin - Pectenol A and B - Pectenolonein Mytilus coruscus (Sea Mussel) (Ref. 0518)


69
(4R)-4-Hydroxyalloxanthin/ (3S,4R,3'R)-4-Hydroxyalloxanthin
(3S,4R,3'R)-7,8,7',8'-Tetradehydro-b,b-carotene-3,4,3'-triiol
VCA0069
Masayoshi Ito
C40H52O3 580.839 Download ChemDraw structure file

lmax (nm): ether 426 (sh), 452, 480 (Ref. 0518)
nmax(KBr)/cm-1: 3300m (OH), 2165w (acetylene), 960s (Ref. 0518)
1H-NMR d(300 MHz, CDCl3): 1.146 (3H, s, 16'-Me), 1.153 (3H, s, 16-Me), 1.201 (3H, s, 16'-Me), 1.208 (3H, s, 17'-Me), 1.924 (3H, s, 18'-Me), 1.962 (3H, s, 19-Me), 1.977 (3H, s, 20'-Me), 2.004 (6H, s, 18, 20'-Me), 2.006 (3H, s, 19'-Me), 2.060 (3H, s, 18-Me), 3.87 (1H, m 3-H), 3.98 (1H, d, J 3.5, 4-H), 3.99 (1H, m, 3'-H), 6.1-6.8 olefinic H (Ref. 0518)
m/z: 580.3912 (M, C4052O3) , 562 (M-18), 560 (M-18-18), 544, 522, 488 (Ref. 0518)
CD in EPA: De 255 (0), 290 (-2), 350 (+0.5) (Ref. 0518)

Mytilus coruscus (Sea Mussel) (Ref. 0427/0517/0518)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)
Partial synthesis of (3S,4R,3'R)-4-hydroxyalloxanthin by NaBH4 reduction of (3S,3'R)-4-ketoalloxanthin was discribed. (Ref. 0518)
Alloxanthin - 4-hydroxyalloxanthin -4-ketoalloxanthin in Mytilus coruscus (Sea Mussel) (Ref. 0518)


70
(4S)-4-Hydroxyalloxanthin/ (3S,4S,3'R)-4-Hydroxyalloxanthin
(3S,4S,3'R)-7,8,7',8'-Tetradehydro-b,b-carotene-3,4,3'-triol
VCA0070
Masayoshi Ito
C40H52O3 580.839 Download ChemDraw structure file

lmax (nm): ether 426 (sh), 452, 480 (Ref. 0518)
nmax(KBr)/cm-1: 3300m (OH), 2165w (acetylene), 960s (Ref. 0518)
1H-NMR d(300 MHz, CDCl3): 1.191 (6H, s, 16, 17-Me), 1.146 (3H, s, 16'-Me), 1.201 (3H, s, 17'-Me), 1.924 (3H, s, 18'-Me), 1.961 (3H, s, 19-Me), 1.977 (3H, s, 20'-Me), 2.004 (6H, s, 18, 20'-Me), 2.006 (3H, s, 19'-Me), 3.77 (1H, m 3-H), 3.98 (1H, d, J 7.5, 4-H), 3.99 (1H, m, 3'-H), 6.1-6.8 olefinic H (Ref. 0518)
m/z: 580.3912 (M, C4052O3) , 562 (M-18), 560 (M-18-18), 544, 522, 488 (Ref. 0518)
CD in EPA: De 255 (0), 290 (-2), 350 (+0.5) (Ref. 0518)

Mytilus coruscus (Sea Mussel) (Ref. 0427/0517/0518)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)
Partial synthesis of (3S,4S,3'R)-4-hydroxyalloxanthin by NaBH4 reduction of (3S,3'R)-4-ketoalloxanthin was discribed. (Ref. 0518)
Alloxanthin - 4-hydroxyalloxanthin -4-ketoalloxanthin in Mytilus coruscus (Sea Mussel) (Ref. 0518)


71
4-Ketocynthiaxanthin/ 4-Ketoalloxanthin
(3S,3'R)-3,3'-Dihydroxy-7,8,7',8'-tetradehydro-b,b-caroten-4-one
VCA0071
Masayoshi Ito
C40H50O3 578.823 Download ChemDraw structure file

lmax (nm): ether 469 (Ref. 0518)
nmax(KBr)/cm-1: 3300m (OH), 2165w (acetylene), 1660 (conj. carbonyl), 960s (Ref. 0518)
1H-NMR d(300 MHz, CDCl3): 1.146 (3H, s, 16'-Me), 1.201 (3H, s, 17'-Me), 1.309 (3H, s, 16-Me), 1.354 (3H, s, 17-Me), 1.925 (3H, s, 18'-Me), 1.970 (3H, s, 20-Me), 1.977 (3H, s, 20'-Me), 2.006 (3H, s, 19'-Me), 2.025 (3H, s, Me-18), 2.043 (3H, s, Me-19), 3.99 (1H, m, 3'-H), 4.33 (1H, dd, J 14, 6, 3-H), 6.1-6.8 olefinic H (Ref. 0518)
m/z: 578.3762 (M, C4050O3) , 560 (M-18), 542, 522, 486 (Ref. 0518)
CD in EPA: De 230 (+4.0), 240 (0), 302 (-5.2), 312 (0) (Ref. 0518)

Mytilus coruscus (Sea Mussel) (Ref. 0518)
Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)

Alloxanthin - 4-hydroxyalloxanthin -4-ketoalloxanthin in Mytilus coruscus (Sea Mussel) (Ref. 0518)


72
(4S,4'S)-4,4'-Dihydroxydiatoxanthin/ 4,4'-Dihydroxydiatoxanthin
(3S,4S,3'S,4'S)-7,8-Didehydro-b,b-carotene-3,4,3',4'-tetrol
VCA0072
Masayoshi Ito
C40H54O4 598.854 Download ChemDraw structure file

lmax (nm): ether 425 (sh), 451, 479 (Ref. 0423)
1H-NMR d(300 MHz, CDCl3): 1.078 (3H, s, 16-Me), 1.094 (3H, s, 17-Me), 1.191 (6H, s, 16', 17'-Me), 1.813 (3H, s 18-Me), 1.957 (3H, s, 20-Me), 1.961 (3H, s, 20-Me), 1.966 (3H, s, 19-Me), 2.004 (6H, s, 18', 19'-Me), 3.79 (2H, m, 3, 3'-H), 3.94 (1H, d, J 7.5, 4-H), 3.98 (1H, d, J 7.5, 3'-H), 6.1-6.8 olefinic H (Ref. 0423)
m/z: 598.4017 (M, C4054O4) (Ref. 0423)
CD in EPA: De 224 (-5.0), 235 (0), 246 (+6.0), 262 (0), 285 (-12.5), 310 (0), 340 (+3.0) (Ref. 0423)

Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)

Diatoxanthin - 4,4'-dihydroxydiatoxanthin - 4-keto-4'-hydroxydiatoxanthin - 7,8-didehydroastaxanthin in Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)


73
(4S,4'S)-4,4'-Dihydroxyalloxanthin/ 4,4'-Dihydroxyalloxanthin
(3S,4S,3'S,4'S)-7,8,7',8'-Tetradehydro-b,b-carotene-3,4,3',4'-tetrol
VCA0073
Masayoshi Ito
C40H52O4 596.838 Download ChemDraw structure file

lmax (nm): ether 426 (sh), 452, 480 (Ref. 0423)
1H-NMR d(300 MHz, CDCl3): 1.191 (12H, s, 16, 17, 16', 17'-Me), 1.961 (6H, s 20, 20'-Me), 2.004 (12H, s, 18, 19, 18', 19'-Me), 3.78 (2H, m, 3, 3'-H), 3.98 (2H, d, J 7.5, 4-H), 6.1-6.8 olefinic H (Ref. 0423)
m/z: 596.3871 (M, C4052O4) (Ref. 0423)
CD in EPA: De 255 (0), 290 (-5), 350 (+0.5) (Ref. 0423)

Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)

Alloxanthin - 4,4'-dihydroxyalloxanthin - 4-keto-4'-hydroxyalloxanthin - 7,8,7',8'-tetradehydroastaxanthin in Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)


74
4-Keto-4'-hydroxydiatoxanthin
(3S,3'S,4'S)-3,3',4'-Trihydroxy-7,8-didehydro-b,b-caroten-4-one
VCA0074
Masayoshi Ito
C40H52O4 596.838 Download ChemDraw structure file

lmax (nm): ether 454-473 (Ref. 0423)
1H-NMR d(300 MHz, CDCl3): 1.191 (6H, s, 16', 17'-Me), 1.211 (3H, s. 16-Me), 1.321 (3H, s, 17-Me), 1.944 (3H, s, 18-Me), 1.968 (3H, s, 20-Me), 1.988 (3H, s, 20'-Me), 2.000 (9H, s, 19, 18', 19'-Me), 3.78 (2H, m,3'-H), 3.98 (1H, d, J 7.5, 3'-H), 4.33 (1H, dd, J 18, 6, 3-H), 6.1-6.8 olefinic H (Ref. 0423) (3S,3'S,4'R) form (Ref. 1299)
m/z: 596.3866 (M, C4052O4) (Ref. 0423)
CD in EPA: De 222 (0), 234 (-5.9), 244 (0), 263 (+7.0), 271 (0), 302 (-13.8), 327 (0) (Ref. 0423) (3S,3'S,4'R) form (Ref. 1299)

Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423) (3S,3'S,4'R) form from Carassius auratus (goldfish) (Ref. 1299)

Diatoxanthin - 4,4'-dihydroxydiatoxanthin - 4-keto-4'-hydroxydiatoxanthin - 7,8-didehydroastaxanthin in Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)


75
4-Keto-4'-hydroxyalloxanthin
(3S,3'S,4'S)-3,3',4'-Trihydroxy-7,8,7',8'-tetradehydro-b,b-caroten-4-one
VCA0075
Masayoshi Ito
C40H50O4 594.823 Download ChemDraw structure file

lmax (nm): ether 446, 496 (sh) (Ref. 0423)
1H-NMR d(300 MHz, CDCl3): 1.191 (6H, s, 16', 17'-Me), 1.310 (3H, s. 16-Me), 1.354 (3H, s, 17-Me), 1.972 (3H, s, 20-Me), 1.999 (3H, s, 20'-Me), 2.052 (6H, s, 18, 18', 19'-Me), 2.064 (3H, s, 19-Me), 3.78 (2H, m,3'-H), 3.98 (1H, d, J 7.5, 3'-H), 4.33 (1H, dd, J 18, 6, 3-H), 6.1-6.8 olefinic H (Ref. 0423) (3S,3'S,4'R) form (Ref. 1299)
m/z: 594.3720 (M, C4050O4) (Ref. 0423)
CD in EPA: De 230 (+4.0), 240 (0), 302 (85.2), 312 (0) (Ref. 0423) (3S,3'S,4'R) form (Ref. 1299)

Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423) (3S,3'S,4'R) form from Carassius auratus (goldfish) (Ref. 1299)

Alloxanthin - 4,4'-dihydroxyalloxanthin - 4-keto-4'-hydroxyalloxanthin - 7,8,7',8'-tetradehydroastaxanthin in Asterina pectinifera, Asterias amurensis (Starfish) (Ref. 0423)


76
Amarouciaxanthin A
(3S,5R,6R,6'S)-3,5,6'-Trihydroxy-6,7-didehydro-5,6,7',8'-tetrahydro-b,e-carotene-3',8'-dione
VCA0076
Masayoshi Ito
C40H54O5 614.854 Download ChemDraw structure file

lmax (nm): ether 455-460 (Ref. 0519)
nmax(KBr)/cm-1: 3350 (OH), 1928 (allene), 1660 (conj. carbonyl), 1650 (conj. carbonyl), 960 (trans olefin) (Ref. 0519)
1H-NMR d(270 MHz, CDCl3): 1.05 (3H, s, 16-Me), 1.08 (6H, s. 17, 16'-Me), 1.34 (6H, s, 17', 18'-Me), 1.81 (3H, s, 19'-Me),1.89 (3H, s, 18-Me), 1.95 (3H, s, 19-Me), 1.98 (6H, s, 20, 20'-Me), 2.35 (1H, AB, J 18, H-2ax), 2.48 (1H, AB, J 18, H-2eq), 2.96 (1H, AB, J 15, H-7), 3.06 (1H, AB, J 15, H-7),4.20 (1H, m, 3'-H), 5.81 (1H, s, 4-H), 6-7 olefinic H (Ref. 0519)
m/z: 614 (1, M), 596 (2, M-H2O), 578 (4, M-2H2O), 462 (100), 445 (23), 444 (50) (Ref. 0519)
CD in EPA: De 220 (0), 245 (-44.9), 260 (0), 270 (+16.7) (Ref. 0519)

Amaroucium pliciferum (Tunicate) (Ref. 0401/0519)
Paphia euglypta (Shellfish) (Ref. 0521)

Fucoxanthin - fucoxanthinol - amarouciaxanthin A - amarouciaxanthin B in Amaroucium pliciferum (Tunicate) (Ref. 0401/0519)

Note: Semisystematic name, and left and right end groups on the chemical structure have been changed.
77
Amarouciaxanthin B/ Sidnyaxanthin
(3R,6'S)-3,6'-Dihydroxy-7,8-didehydro-7',8'-dihydro-b,e-carotene-3',8'-dione
VCA0077
Masayoshi Ito
C40H52O4 596.838 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
lmax (nm): ether 463 (Ref. 0519)
nmax(KBr)/cm-1: 3350 (OH), 2165 (acetylene), 1660 (conj. carbonyl), 1650 (conj. carbonyl), 960 (trans olefin) (Ref. 0519)
1H-NMR d(270 MHz, CDCl3): 1.05 (3H, s, 16-Me), 1.08 (3H, s. 17-Me), 1.14 (3H, s, 16'-Me), 1.20 (3H, s, 17'-Me), 1.89 (3H, s, 18-Me), 1.90 (3H, s, 18'-Me),1.95 (3H, s, 19-Me), 1.98 (9H, s, 20, 19', 20'-Me), 2.35 (1H, AB, J 18, H-2ax), 2.48 (1H, AB, J 18, H-2eq), 2.96 (1H, AB, J 15, H-7), 3.06 (1H, AB, J 15, H-7),4.00 (1H, m, 3'-H), 5.81 (1H, s, 4-H), 6-7 olefinic H (Ref. 0519)
13C-NMR d(50 MHz, CDCl3): 11.6 (C19), 12.7 (C-20'), 12.9 (C-20), 18.1 (C-19'), 20.7 (C-18), 23.3 (C-16), 24.8 (C-17), 38.7 (C-7), 42.0 (C-1), 49.8 (C-2), 78.5 (C-6), 89.5 (C-7'), 98.6 (C-8'), 120.0 (C-9'), 123.1 (C-11), 125.3 (C-11'), 126.0 (C-4), 129.6 (C-15'), 132.9 (C-14'), 133.2 (C-15), 135.0 (C-9, 12'), 135.4 (C-13), 137.6 (C-13'), 137.7 (C-14), 138.0 (C-10'), 142.2 (C-10), 147.1 (C-12), 167.9 (C-5), 197.6 (C-8), 203.4 (C-3) (Ref. 0519)
m/z: 596 (1, M), 444 (100) (Ref. 0519)
CD in EPA: De 220 (0), 245 (-35.0), 260 (0), 270 (+16.7) (Ref. 0519)

Amaroucium pliciferum (Tunicate) (Ref. 0401/0519)

Fucoxanthin - fucoxanthinol - amarouciaxanthin A - amarouciaxanthin B in Amaroucium pliciferum (Tunicate) (Ref. 0401/0519)

Note: Semisystematic name, and left and right end groups on the chemical structure have been changed.
78
Mytiloxanthinone
3,8'-Dihydroxy-7,8-didehydro-b,k-carotene-3',6'-dione
VCA0078
Masayoshi Ito
C40H52O4 596.838 Download ChemDraw structure file
Inhibitotory effect on Epstein-Barr virus activation (anti-tumor promotion) (Ref. 0217)
lmax (nm): ether 475 (Ref. 0035/0520)
nmax(KBr)/cm-1: 3390 (OH), 2165 (acetylene), 1738 (carbonyl), 1610, 1595, 1588 (enolic b-diketone), 960 (trans olefin) (Ref. 0035/0520)
1H-NMR d(80 MHz, CDCl3): 1.03 (3H, s, 16'-Me), 1.14 (3H, s. 16-Me), 1.20 (3H, s, 17-Me), 1.22 (3H, s, 17'-Me), 1.34 (3H, s, 18'-Me), 1.92 (3H, s, 18-Me),1.99 (12H, s, 19, 20, 19', 20'-Me), 1.98 (9H, s, 20, 19', 20'-Me), 5.90 (1H, s, 7'-H), 6-7 olefinic H, 16.25 (enol H) (Ref. 0035/0520)
m/z: 596.3862 (M, C40H52O4), 578 (M-H2O), 560 (M-2H2O), 471 (M-125), 401 (M-125), 195 (M-401), 125 (Ref. 0035/0520)


Malocynthia roretzi (Sea suirt) (Ref. 0035/0401)

Fucoxanthin - fucoxanthinol - halocynthiaxanthin - mytiloxanthin -mytiloxanthinone (Ref. 0035/0401)


79
Phoenicopterone/ a-Echinenone
(6'R)-b,e-Caroten-4-one
VCA0079
Masayoshi Ito
C40H54O 550.856 Download ChemDraw structure file

lmax (nm): ether 449, 470 (Ref. 0502)
1H-NMR d(300 MHz, CDCl3): 0.82 (3H, s, 16'-Me), 0.90 (3H, s, 17'-Me), 1.03 (6H, s, 16,17-H), 1.58 (3H, s, 18'-Me), 1.85 (2H, t, J 7, 2-H), 1.87 (3H, s, 18-Me), 1.91 (3H, s, 19'-Me), 1.97 (3H, s, 20'-Me), 1.98 (3H, s 20-Me), 2.00 (3H, s, 19-Me), 2.02 (2H, t, J 7, H-4'), 2.51 (2H, t, J 7, 4-H), 5.41 (1H, br. s, 4'-H), 5.54 (1H, dd, J 15.5, 7, H-7'), 6.1-6.7 (olefinic H) (Ref. 0502)
m/z: 550 (M) (Ref. 0502)
CD in EPA: De 225 (+1), 260 (+10), 285 (0), 345 (+2.5) (Ref. 0502)

Sea-urchins (Ref. 0502)

a-Carotene - a-echinenone in Sea-urchins (Ref. 0502)


80
4-Ketocapsanthin
(3S,3'S,5'R)-3,3'-Dihydroxy-b,k-carotene-4,6'-dione
VCA0080
Masayoshi Ito
C40H54O4 598.854 Download ChemDraw structure file

lmax (nm): ether 473 (Ref. 0522)
1H-NMR d(300 MHz, CDCl3): 0.84 (3H, s, 16'-Me), 1.21 (3H, s, 16, 17'-Me), 1.32 (3H, s, 17-Me), 1.37(3H, s, 18'-Me), 1.74 (3H, s, 18-Me), 1.81 (1H, dd, 2-Hb), 1.95 (1H, s 18-Me), 1.96 (3H, s, 19'-Me), 1.99 (3H, s, 20'-Me), 2.03 (6H, s, 19, 20-Me), 2.16 (1H, dd, 2-Ha), 2.39 (1H, ddd, J 17, 6, 1.5, 4a-H), 2.96 (1H, dd, J 15.5, 9, 4'a-H), 3.68 (1H, s, OH), 4.33 (1H, m, 3-H), 4.52 (1H, m, 3'-H), 6.13-6.8 (olefinic H), 7.33 (1H, d, J 15, 8'-H) (Ref. 0522)
m/z: 550 (M) (Ref. 0522)
CD in EPA: De 225 (0), 240 (-7.0), 252 (0), 260 (+2.5), 266 (0), 310 (-12.0), 335 (-2.5), 370 (-7.5) (Ref. 0522)

Carrassius auratus (Goldfih, feed on paprika pigment) (Ref. 0522)

Capsanthin - 4-ketocapsanthin in Carrassius auratus (Goldfih, feed on paprika pigment) (Ref. 0522)


81
Phytoene
15-cis-7,8,11,12,7',8',11'12'-Octahydro-y,y-carotene
VCA1001
Norihiko Misawa
C40H64 544.936 Download ChemDraw structure file
The transfer of crtB gene from Erwinia uredovora in mammalian cells produced phytoene, and the cells were protective against oxidative stress and H-ras induced transformation (Ref. 1205).
The cancer preventive activity of phytoene was confirmed in phytoene producing mammalian cells (Ref. 1207).
Transgenic mice carrying the phytoene synthase gene crtB produce phytoene and induce connexin 26 (Ref. 1349).
lmax (nm): acetonitrile/methanol/THF (58:35:7) 278 (shoulder), 288, 298
[Spectrum 1004]
[Spectrum 1051] (Ref. 1057)
methanol 276 (shoulder), 284, 294 (shoulder) (15-cis)
[Spectrum 1113] (Ref. 1052)
1H- and 13C-NMR in CDCl3 (Ref. 1265). 13C-NMR in CDCl3 (Ref. 0061)


HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=28.2 min (all-trans), 26.9 min (15-cis) (Ref. 1057)
The crtI mutant of Rhodobacter sphaeroides (purple photosynthetic bacteria) (Ref. 1089)
Myxococcus sp. MY-18 (fruiting gliding myxobacterium) accumulats (Ref. 1353).

Phytoene is the first colorless carotenoid, which is formed form two molecules of geranylgeranyl diphosphate (GGPP) by phytoene synthase in all carotenogenic organisms (Ref. 1001/1029/1030). This reaction is reported to be a rate-limiting step for carotenoid biosynthesis in a higher plant and a carotenogenic bacterium (Ref. 1016/1031). All carotenoids, except for C30 special ones, are synthesized from phytoene as the starting carotenoid substrate (Ref. 1003/1004/1005).
Chloroflexus aurantiacus (green filamentous photosynthetic bacterium) accumulates phytoene in the culture with 2-hydroxybiphenyl, and this compound inhibits carotenoid formation by inhibiting the flow of electrons liberated in the course of the desaturase reaction (Ref. 1166).
The genes from Xanthophyllomyces dendrorhous (crtYB) (Ref. 1172), Mucor circinelloides (carRP) (Ref. 1173), and Phycomyces blakesleeanus (carRA) (Ref. 1174) (fungus) encode a bifunctional protein involved phytoene synthase activity located in C-terminus domain and lycopene cyclase activity located in N-terminus domain.
An Escherichia coli transformant carrying the Erwinia uredovora crtE and crtB genes (Ref. 0201/1002).
[Table 1019]
Phytoene desaturase (PDS) inhibitor (Ref. 1252)
Phytoene synthase genes (crtB or psy), which mediate the formation of phytoene from GGPP, have been cloned from the photosynthetic bacteria Rhodobacter species (Ref. 1032/1033), the nonphotosynthetic bacteria Erwinia species (Erwinia uredovara and E. herbicola) (Ref. 0201/0233/1034) and Thermus thermophilus (Ref. 1031), the cyanobacterium Synechococcus PCC7942 (Ref. 1029), the fungus Neurospora crassa (Ref. 1035), and higher plants such as tomato and red pepper (Ref. 1036/1037/1038/1039).
In tomato, PSY1 transcripts predominate in seedlings and in late stages of fruit ripeing, whereas PSY2 transcripts are relatively more abundant in mature leaves (Ref. 1036/1186/1190).
Biotechnological achievement has been made in metabolic engineering of caroteoids in animal cells, by the group of H. Nishino in 1995, i. e., a transgenic mammalian cells, which accumulates phytoene, has been constructed by expressing the Erwinia phytoene synthase gene crtB (Ref. 1028).
The photophysics of two lowest lying singlet excited states in 15-cis-phytoene and 15-cis-phytofluene by means of steady-state fluorescence spectroscopy (Ref. 1113)
82
Phytofluene
7,8,11,12,7',8'-Hexahydro-y,y-carotene
VCA1002
Norihiko Misawa
C40H62 542.920 Download ChemDraw structure file
The photophysics of two lowest lying singlet excited states in 15-cis-phytoene and 15-cis-phytofluene by means of steady-state fluorescence spectroscopy (Ref. 1113)
lmax (nm): acetonitrile/methanol/THF (58:35:7) 255, 334, 349, 368, %III/II=71
[Spectrum 1005]
[Spectrum 1051] (Ref. 1057)
methanol 254, 329, 346, 365, %III/II=85.0
[Spectrum 1114] (Ref. 1052)


Fluoresence (Ref. 1062)
HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=20.5 min (all-trans), 19.3 min (15-cis) (Ref. 1057)


Phytofluene is synthesized from phytoene by the one desaturation reaction.
[Table 1020]


83
z-Carotene/ Symmetric z-Carotene/ 7,8,7',8'-Tetrahydrolycopene
7,8,7',8'-Tetrahydro-y,y-carotene
VCA1003
Norihiko Misawa
C40H60 540.904 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 237, 294, 381, 401, 426, %III/II=100
[Spectrum 1006]
[Spectrum 1051] (Ref. 1057)
methanol 295, 377, 398, 422, %III/II=95.0
[Spectrum 1115] (Ref. 1052)
hexane 358, 378, 399.5, 424.5 (Ref. 1073)


Fluoresence (Ref. 1062)
HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=16.3 min (all-trans), 15.1 min (15-cis) (Ref. 1057)
Silicagel G TLC, benzene-hexane (3:17): Rf=0.36 (Ref. 1073)
Rhodobacter capsulatus, Rhobacter sphaeroides, Rubrivax gelatinosus (purple photosynthetic bacteria); Chlorobium limicola, Pelodictyon luteolum (green sulfur photosynthetic bacteria); Rhoseobacter denitrificans (=Erythrobacter sp. OCh 114) (aerobic photosynthetic bacteria) (Ref. 1054/1073)
Carrot root (Ref. 1055)

z-Carotene is synthesized from phytoene through two-step desaturation reactions with phytoene desaturase (plant-type; CrtP/PDS) via phytofluene in carotenogenic organisms such as cyanobacteria, algae, and higher plants (Ref. 1003/1004/1005/1046). In these organisms, z-carotene is metabolized to lycopene by further two-step desaturation reactions with z-carotene desaturase (CrtQ/ZDS) by way of neurosporene (Ref. 1003/1004/1005/1022/1131).
A plastid terminal oxidase (PTOX) is a cofactor of PDS and ZDS in plants, such as Arabidopsis, tomato, peper and rice (Ref. 1187/1188/1189). Plastoquinone and ubiquinone are the cofactor of ZDS from peper (Ref. 1022). CrtP/ZDS is inhibited by norflurazon and a herbicide J852, and CrtQ/ZDS by the J852 (Ref. 1004/1191). CrtQ is inhibited by 4-phenyl-3-(substituted benzylthio)-4H-1,2,4-triazoles in lettuse leaves (Ref. 1302).
An Escherichia coli transformant carrying the Erwinia uredovora crtE and crtB and Synechococcus PCC7942 pds (crtP) genes (Ref. 1046).
[Table 1021]
z-Carotene desaturase (ZDS) inhibitor (Ref. 1252)
Phytoene desaturase genes (pds, crtP), which mediate the formation of z-carotene from phytoene, have been cloned from the cyanobacterium Synechococcus PCC7942 (Ref. 1045), and higher plants such as tomato and soybean (Ref. 1038/1047/1048).

84
Neurosporene
7,8-Dihydro-y,y-carotene
VCA1004
Norihiko Misawa
C40H58 538.889 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 269, 333, 418, 442, 470, %III/II=91
[Spectrum 1007]
[Spectrum 1051] (Ref. 1057); methanol 328, 413, 436, 465, %III/II=90.2
[Spectrum 1116] (Ref. 1052); hexane 415, 438, 468 (Ref. 1073)


Fluorescence spectra in n-hexane and CS2 (Ref. 1060/1061) Fluoresence (Ref. 1062)
HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=13.4 min (Ref. 1057) Silicagel G TLC, benzene-hexane (3:17): Rf=0.31 (Ref. 1073)
Accumulation in Rhodobacter sphaeroides Ga and G1C mutants(Ref. 1054). Rhodobaca bogoriensis (purple photosynthetic bacteria) (Ref. 1100).
Roseobacter denitrificans (=Erythrobacter sp. OCh 114) (aerobic photosynthetic bacterium) (Ref. 1073).


[Table 1022] Neurosporene is synthesized from phytoene through three-step desaturation reactions with phytoene desaturase (Rhodobacter-type) via phytofluene and z-carotene in the purple photosynthetic bacteria Rhodobacter species (Ref. 1005/1032).
The first carotenoid in the spheroidene pathway of purple photosynthetic bacteria (Ref. 1054).
Rhodobacter sphaeroides Ga and G1C mutants accumulate neurosporene (Ref. 1054). The crtC mutant of Rba. sphaeroides cultured under anaerobic conditions also accumulates neurosporene, and the crtD mutant accumulatates neurosporene, chloroxanthin and methoxyneurosporene (Ref. 1089).
An Escherichia coli transformant carrying the Erwinia uredovora crtE and crtB and Rhodobacter capsulatus crtI genes (Ref. 1046).
An Escherichia coli transformant carrying the Staphylococcus aureus crtN and the Erwinia uredovora crtE and crtB genes (Ref. 1215).
Neurosporene is a substrate of CrtC from Rubrivivax gelatinosus and Rhodobacter capsulatus (photosynthetic bacteria) to produce chloroxanthin (OH-neurosporene) (Ref. 1255).
Phytoene desaturase genes (crtI), which mediate the formation of neurosporene from phytoene, have been cloned from the purple photosynthetic bacteria Rhodobacter capsulatus and Rba. sphaeroides (Ref. 1032/1033).
Neurosporene is the major product of CrtI from Rubrivivax gelatinosus (purple photosynthetic bacterium) resulting in the synthesis of spheroidene, and lycopene is the minor resulting in the synthesis of spirilloxanthin (Ref. 1107).
The crtI mutants by random and site-directed mutagenesis of Rhodobacter sphaeroides, which produces only neurosporene, change to prodece also lycopene (Ref. 1116).

85
3,4-Dehydrolycopene/ 3,4-Didehydrolycopene
3,4-Didehydro-y,y-carotene
VCA1005
Norihiko Misawa
C40H54 534.857 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 320, 394, 470, 497, 530, %III/II=64
[Spectrum 1008]
[Spectrum 1051] (Ref. 1057/1064)

FD-MS m/z: 534 (Ref. 1064)
Fluoresence (Ref. 1062)
HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=10.4 min (Ref. 1057)


3,4-Dehydrolycopene is synthesized from phytoene through five-step desaturation reactions with a phytoene desaturase enzyme derived from carotenogenic fungi such as Neurospora (Ref. 1064/1091/1135). This enzyme is NAD dependent (Ref. 1135).
3,4-Didehydrolycopene may be cyclized to torulene by the gene products of Neurospora crassa (al-2) (Ref. 1176) and Fusarium fujikuroi (carRA) (Ref. 1175) (fungus), which are bifunctional protein involved carotene cyclase and phytoene synthase activities.
an Escherichia coli transformant carrying the Erwinia uredovora crtE and crtB and Neurospora crassa al-1 genes (Ref. 1064)
A phytoene desaturase gene (al-1), which mediate the formation of 3,4-dehydrolycopene from phytoene, has been cloned from the carotenogenic fungus Neurospora crassa (Ref. 1064/1091/1135).

86
Torulene
3',4'-Didehydro-b,y-carotene
VCA1006
Norihiko Misawa
C40H54 534.857 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 309, 382, 467 (shoulder), 489, 520, %III/II=46
[Spectrum 1009] (Ref. 1057)
methanol 309, 379, 463 (shoulder), 484, 516, %III/II=41
[Spectrum 1117]



HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=13.8 min (Ref. 1057)
Neurospora crassa (Ref. 1135)

The Escherichia coli transformant carrying the Erwinia uredovora crtE and crtB genes, the crtI gene (crtI14) shuffled between the corresponding genes of E. uredovora and E. herbicola, and the crtY gene (crtY2) shuffled between the corresponding genes of E. uredovora and E. herbicola produces torulene (Ref. 1049).
Phytoene is desaturated to 3,4-didehydrolycopene by a five-step desaturase, Al-1, from Neurospora crassa. Since g-carotene is not substrate of Al-1, torulene must be produced from 3,4-didehydrolycopene by cyclization (Ref. 1135).
3,4-Didehydrolycopene may be cyclized to torulene by the gene products of Neurospora crassa (al-2) (Ref. 1176) and Fusarium fujikuroi (carRA) (Ref. 1175) (fungus), which are bifunctional protein involved carotene cyclase and phytoene synthase activities.
A special phytoene desaturase gene (crtI14), which has been shuffled between the crtI genes of the epiphytic bacteria Erwinia uredovora and E. herbicola, combined with a special lycopene cyclase gene (crtY2), which has been shuffled between the crtY genes of E. uredovora and E. herbicola, has mediated the synthetic reaction of torulene from phytoene as the substrate(Ref. 1049).
DNA shuffling technology has made it possible to create torulene-producing E. coli by shuffling the crtI and crtY genes between Erwinia species (Ref. 1049).
87
g-Carotene/ b,y-Carotene
b,y-Carotene
VCA1007
Norihiko Misawa
C40H56 536.873 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 284, 356, 440 (shoulder), 462, 492, %III/II=41.7
[Spectrum 1010] (Ref. 1057/1103); methanol 459, 485
[Spectrum 1118] (Ref. 1055)
1H-NMR (CDCl3) (Ref. 1103)
FD-MS m/z: 536 (Ref. 1103/1105)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=14.8 min (Ref. 1057)
Chloroflexus aurantiacus (Ref. 1105) and Chloroflexus aggregans (S. Takaichi) (Ref. 1106) (green filamentous bacteria)
Chlorobium (present name, Chlorobaculum) tepidum (green sulfer bacteria) (Ref. 1103)
Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1111)
Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1055)

g-Carotene is the biosynthetic intermediate through cyclization reactions from lycopene to b-carotene.
A mutant of Rhodococcus rhodochrous accumulats g-karotene and 4-keto-g-karotene (Ref. 1111).
[Table 1031]
A lycopene b-monocyclase gene crtYm is isolated from a unique marine bacterium that produces myxol (Ref. 1241), and crtLm is isolated from Rhodococcus erythropolis and Deinococcus radiodurans (bacteria) (Ref. 1278).

88
b-Zeacarotene
7',8'-Dihydro-b,y-carotene
VCA1008
Norihiko Misawa
C40H58 538.889 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 254, 321, 408 (shoulder), 429, 453, %III/II=52.6
[Spectrum 1011] (Ref. 1056/1057); methanol 314, 405 (shoulder), 426, 451 %III/II=52
[Spectrum 1119]

FD-MS m/z: 538 (Ref. 1056)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=18.3 min (Ref. 1056/1057)


b-Zeacarotene is the biosynthetic intermediate through cyclization reactions by lycopene b-cyclase from neurosporene to 7,8-dihyro-b-carotene (Ref. 1056).
In E. coli neurosporene background, lycopene b-cyclase from Arabidopsis produces b-zeacarotene (Ref. 1015).


89
Dihydro-b-carotene/ 7,8-Dihydro-b-carotene
7,8-Dihydro-b,b-carotene
VCA1009
Norihiko Misawa
C40H58 538.889 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 255, 324, 410 (shoulder), 429, 454, %III/II=54.0
[Spectrum 1012] (Ref. 1056/1057)
1H-NMR (CDCl3): 1.01 s (16, 17-H3), 1.03 s (16', 17'-H3), 1.43 (2-H2), 1.47 (2'-H2), 1.58 (3-H2), 1.62 s (18-H3), 1.72 s (18'-H3), 1.86 s (19-H3), 1.92 t (J=7.0 Hz; 4-HH2), 1.95 s (20-H3), 1.97 s (19', 20'-H3), 2.02 t (J=6.5 Hz; 4'-H2), 2.12 (7, 8-H2), 5.98 d (J=11.0 Hz; 10-H), 6.50 dd (J=11.0, 15.0 Hz; 11-H) (Ref. 1056)
FD-MS m/z: 538 (Ref. 1056)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=24.1 min (Ref. 1056/1057)
Chlorobium phaeobacteroides 1549 (new name, Chlorobaculum limnaeum 1549; green-sulfur photosynthetic bacterium), the content of this carotenoid incleases under high light culture (Ref. 1282).

An Escherichia coli transformant carrying the Erwinia uredovora crtE and crtB and Rhodobacter capsulatus crtI genes, and lycopene cyclase gene (E. uredovora crtY or Capsicum annuum (higher plant) lcy) (Ref. 1056)
Escherichia coli, which carries the crtE, crtB and crtY genes from the epiphytic bacterium Erwinia uredovora, and the crtI gene from the purple photosynthetic bacterium Rhodobacter capsulatus, has synthesized 7,8-Dihydro-b-carotene from farnesyl diphosphate (FPP). (Ref. 1056)
When the lycopene cyclase gene from the epiphytic bacterium Erwinia uredovara (crtY) or a higher plant red papper Capsicum annuum (lcy-beta) has been expressed in Escherichia coli with a neurospore background, this unnatural carotenoid has been produced (Ref. 1056). The lcy-beta (crtL) genes from Synechococus sp. PCC 7942 and Lycopersicon esculentum (tomato) have also seemed to have the same characteriatics. This result shows that the substrate of CrtY or Lcy-beta (Crt-L) is not only y end group but also 7,8-dihydro-y end group. When the substrate is z-carotene, the product is tetrahydro-b-carotene (Ref. 1056).

90
Parasiloxanthin/ 7,8-Dihydrozeaxanthin
(3R,3'R)-7,8-Dihydro--b,b-carotene-3,3'-diol
VCA1010
Norihiko Misawa
C40H58O2 570.887 Download ChemDraw structure file

202 degC (Ref. 1058)
lmax (nm): methanol 408 (shoulder), 428, 453, %III/II=64.5
[Spectrum 1120] (Ref. 1056) petroleum ether 405, 427, 452 (Ref. 1058)

1H-NMR (CDCl3): 1.04 s (16-H3), 1.07 s (16', 17'-H3), 1.08 s (17-H3), 1.32 d (J=4.6 Hz; 3-OH), 1.36 d (J=4.4 Hz; 3'-OH), 1.44 t (J=12.0 Hz; 2-Hax), 1.48 t (J=11.8 Hz; 2'-Hax), 1.65 s (18-H3), 1.72 td (2-Heq), 1.74 s (18'-H3), 1.77 td (J=2.9, 12.5 Hz; 2'-Heq), 1.86 s (19-H3), 1.95 s (20-H3), 1.97 s (19', 20'-H3), 2.00 dd (J=6.0, 15.0 Hz; 4-Hax), 2.06 dd (J=4.3, 12.6 Hz; 4'-Hax), ca. 2.13 (7, 8-H2), 2.25 dd (J=4.8, 15.8 Hz; 4-Heq), 2.39 dd (J=5.3, 16.8 Hz; 4'-Heq), 3.94 m (3-H), 4.00 m (3'-H), 5.98 d (J=11.0 Hz; 10-H), 6.50 dd (J=11.0, 15.0 Hz; 11-H) (Ref. 1056)
FD-MS m/z: 570 (Ref. 1056)
MS m/z: 570 (M), 552 (M-18), 478 (M-92), 417 (M-153), 399 (M-153-18), 325 (M-153-92) (Ref. 1058)

Fin and skin of Parasilurus asotus (Japanese catfish ) (Ref. 1058)

an Escherichia coli transformant carrying the Erwinia uredovora crtE, crtB, crtY and crtZ and Rhodobacter capsulatus crtI genes (Ref. 1056)
Escherichia coli, which carries the crtE, crtB, crtY and crtZ genes from the epiphytic bacterium Erwinia uredovora, and the crtI gene from the purple photosynthetic bacterium Rhodobacter capsulatus, has synthesized parasiloxanthin from farnesyl diphosphate (FPP). (Ref. 1056)

91
7,8-Dihydroparasiloxanthin/ 7,8,7',8'-Tetrahydrozeaxanthin
7,8,7',8'-Tetrahydro--b,b-carotene-3,3'-diol
VCA1011
Norihiko Misawa
C40H60O2 572.903 Download ChemDraw structure file

lmax (nm): petroleum ether 380, 401, 426 (Ref. 1058)
1H-NMR (CDCl3): 1.04 s (16-H3), 1.08 s (17-H3), 1.65 s (18-H3), 1.86 s (19-H3), 1.94 s (20-H3), 2.11 (7, 8-H2) (Ref. 1058)



Fin and skin of Parasilurus asotus (Japanese catfish) (Ref. 1058)




92
Antheraxanthin
(3S,5R,6S,3'R)-5,6-Epoxy-5,6-dihydro-b,b-carotene-3,3'-diol
VCA1012
Norihiko Misawa
C40H56O3 584.871 Download ChemDraw structure file

197 degC(Ref. 1090)
lmax (nm) (e): diethyl ether/isopentane/ethanol (5:5:2) 269 (20.5), 332 (13.5), 422 (94.0), 445 (136.0), 473 (122.0)(Ref. 1090)
1H-NMR (CDCl3): 0.980 s (16-H3), 1.074 s (16', 17'-H3), 1.151 s (17-H3), 1.189 s (18-H3), 1.34 d (J=5 Hz; 3'-OH), 1.737 s (18'-H3), 1.927 s (19-H3), 1.965 s (20-H3), 1.968 s (19'-H3), 1.973 s (20'-H3), 3.88 (3-Hax), ca. 4.00 (3'-Hax), 5.88 (7-H) (Ref. 1090/0079) (Ref. 1329)

CD l nm (de) diethyl ether/isopentane/ethanol (5:5:2) 180 degC: 217 (-38.1), 242 (36.4), 280 (-55.0), 330 (6.2), 345 (10.6), 408 (2.3), 435 (2.8 , 465 (3.8), 493 (5.2); RT: 216 ()-13.2, 239 (10.3), 275 (-21.1), 335 (5.7) (Ref. 1090/0079) (Ref. 1329)

Plants.
(3S,5R,6S,3'R) and (3S,5S,6R,3'R) antheraxanthin are found from the common freshwater goby Rhinogobius brunneus (Ref. 1329).

Antheraxanthin is an intermediate through epoxydation reaction from zeaxanthin to violaxanthin by biosynthesis and through de-epoxidation reaction from violaxanthin to zeaxanthin by xanthophyll-cycle.
Antheraxanthin is the substrate of violaxanthin de-epoxidase (Ref. 1143/1144).
[Table 1032]


93
b-Cryptoxanthin
(3R)-b,b-Caroten-3-ol
VCA1013
Norihiko Misawa
C40H56O 552.872 Download ChemDraw structure file
Induced colon tumor of rats was lowered by the diet supplemented with 25 ppm b-cryptoxanthin (Ref. 1203). The cancer preventive activity of phytoene was confirmed in phytoene producing mammalian cells (Ref. 1207). Lutein and b-cryptoxanthin suppressed tumorigenesis in skin and colon in mice (Ref. 1208).
lmax (nm): methanol 272, 447, 473, %III/II=16
[Spectrum 1121] (Ref. 1055)
1H-NMR (CDCl3): 1.03 s (16', 17'-H3), 1.07 s (16, 17-H3), 1.35 d (J=5.1 Hz; 3-OH), ca. 1.46 (2'-H2), 1.48 dd (2-Hax), ca. 1.62 (3'-H2), 1.72 s (18'-H3), 1.74 s (18-H3), ca. 1.77 (2-Heq), 1.97 s (19, 20, 19', 20'-H3), ca. 2.02 (4'-H2), 2.04 dd (4-Hax), 2.39 dd (4-Heq), 4.00 m (3-Hax) (Ref. 1055)
FD-MS m/z: 552 (Ref. 1055)
CD spectrum is the same with that of (3R,3'R)-zeaxanthin (Ref. 1055)

Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1055)
Anacystis nidulans (cyanobacterium) (Ref. 1077)

b-Cryptoxanthin is the biosynthetic intermediate through hydroxylation reactions from b-carotene to zeaxanthin.
[Table 1033]


94
Adonirubin/ Phoenicoxanthin/ 3-Hydroxycanthaxanthin
(3S)-3-Hydroxy-b,b-carotene-4,4'-dione
VCA1014
Norihiko Misawa
C40H52O3 580.839 Download ChemDraw structure file

lmax (nm): benzene 483 (Ref. 0208); ethanol 477 (Ref. 0152)


CD l nm (de) diethyl ether/isopentane/ethanol (5:5:2): 242 (-14.0), 271 (4.0), 314 (-18.3), 367 (2.0) (Ref. 0208)

Agrobacterium aurantiacum (marine bacterium) (Ref. 0208)
Rhizobium lupini (soil and root nodule bacterium) (Ref. 0152)

Phoenicoxanthin is one of biosynthetic intermediates through hydroxylation and ketolation reactions from b-carotene to astaxanthin (Ref. 0202).
an Escherichia coli transformant carrying the Erwinia uredovora crtE, crtB, crtI, crtY and crtZ and A. aurantiacum crtW genes, and an E. coli transformant carrying the E. uredovora crtE, crtB, crtI and crtY and A. aurantiacum crtZ and crtW genes (Ref. 0202)


95
3-Hydroxyechinenone/ 3-OH-Echinenone
(3S)-3-Hydroxy-b,b-caroten-4-one
VCA1015
Norihiko Misawa
C40H54O2 566.856 Download ChemDraw structure file

lmax (nm): ethanol 460 (Ref. 1082); ethanol 466 (Ref. 0152); benzene 477 (Ref. 0208)

566 [M], [M-16], [M-18], [M-92], [M-106], [M-154] (Ref. 1082)
CD l nm (de) diethyl ether/isopentane/ethanol (5:5:2): 259 (1.4), 300 (-15.2) (Ref. 0208)
3'-OH-Echinenone is eluted faster than 3-OH-echinenone on C18-HPLC.
Aphanocapsa strain PCC 6714 (cyanobacterium) (Ref. 1082)
Agrobacterium aurantiacum (marine bacterium) (Ref. 0208)
Rhizobium lupini (soil and root nodule bacterium) (Ref. 0152)

3-Hydroxyechinenone is one of biosynthetic intermediates through hydroxylation and ketolation reactions from b-carotene to astaxanthin (Ref. 0202).
an Escherichia coli transformant carrying the Erwinia uredovora crtE, crtB, crtI, crtY and crtZ and A. aurantiacum crtW genes, and an E. coli transformant carrying the E. uredovora crtE, crtB, crtI and crtY and A. aurantiacum crtZ and crtW genes (Ref. 0202)


96
3'-Hydroxyechinenone/ 3'-OH-Echinenone
(3'R)-3'-Hydroxy-b,b-caroten-4-one
VCA1016
Norihiko Misawa
C40H54O2 566.856 Download ChemDraw structure file
A water-soluble orange carotenoid protein (OCP) isolated from Arthrospira maxima contains 3'-hydroxyechinenone, and the crystal structure is determined at a resolution of 2.1 A. OCP forms a homodimer with one carotenoid molecule per monomer (Ref. 1240).
lmax (nm): acetone 459, 471 (shoulder) (Ref. 1081); acetone 430 (shoulder), 458, 475 (shoulder); hexane 420 (shoulder), 450, 470 (shoulder); methanol 458, 465 (shoulder) (Ref. 1083); benzene 469 (Ref. 0208); methanol
[Spectrum 1122]
1H-NMR (CDCl3): 1.07 s (16', 17'-H3), 1.19 s (16, 17-H3), 1.74 s (18'-H3), 1.85 t (J=7 Hz, 2-H), 1.87 s (18-H3), 1.97 s (19'-H3), 1.98 s (20, 20'-H3), 2.00 s (19-H3), 2.51 t (J=7 Hz, 3-H) (Ref. 1081)
566 [M], [M-18], [M-151], [M-153] (Ref. 1083)
CD l nm (de) isopropanol: 214 (18), 237 (-4.6), 250 (0), 263 (1.4), 273 (0), 303 (-5.2), 360 (0), 440 (-1.7), 460 (0), 501 (3.0) (Ref. 1081); diethyl ether/isopentane/ethanol (5:5:2): 234 (-11.3), 259 (4.9), 299 (-14.1), 359 (1.9) (Ref. 0208)
3'-OH-Echinenone is eluted faster than 3-OH-echinenone on C18-HPLC.
Botryococcus braunii (Botryococcaceae, Chlorococcales) (Ref. 1081)
Spirulina maxima, Aphanizomenon flos-aquae, Microcystis aeruginosa, Oscillatoria rubescens and Anthrospira sp. (Ref. 1083), Synechocystis sp. PCC 6803 (Ref. 1222), Arthrospora maxima (Ref. 1240) (cyanobacteria)
Agrobacterium aurantiacum (marine bacterium) (Ref. 0208)

3'-Hydroxyechinenone is one of biosynthetic intermediates through hydroxylation and ketolation reactions from b-carotene to astaxanthin (Ref. 0202).
an Escherichia coli transformant carrying the Erwinia uredovora crtE, crtB, crtI, crtY and crtZ and A. aurantiacum crtW genes, and an E. coli transformant carrying the E. uredovora crtE, crtB, crtI and crtY and A. aurantiacum crtZ and crtW genes (Ref. 0202)
This is produced by CrtR from echinenone and one of end products in Synechocystis sp. PCC 6803 (Ref. 1222).

Main carotenoid of the water soluble carotenoprotein of cyanobacteria, Spirulina maxima, Aphanizomenon flos-aquae and Microcystis aeruginosa (Ref. 1083)
This carotenoid is bound to a water soluble protein, which is encoded by gene slr 1963 in the Kazusa DNA sequence data bank containing the Synechosystis sp. PCC 6803 genome (Ref. 1130).
97
Zeaxanthin diglucoside/ Zeaxanthin b-D-diglucoside
(3R,3'R)-3,3'-Di(b-D-glucopyranosyloxy)-b,b-carotene
VCA1017
Norihiko Misawa
C52H76O12 893.153 Download ChemDraw structure file





Erwinia uredovora and E. herbicola (epiphytic nonphotosynthetic bacteria) (Ref. 0201)

Zeaxanthin b-D-diglucoside is synthesized from zeaxanthin and UDP-glucose with zeaxanthin glucosyltransferase (the Erwinia crtX gene product) (Ref. 1051).
an Escherichia coli transformant carrying the intact crt gene cluster from E. uredovora or E. herbicola (Ref. 0201/1002)
Escherichia coli, which carries the crtE, crtB, crtI, crtY, crtZ, and crtX genes derived from the epiphytic bacteria Erwinia species, has produced zeaxanthin b-D-diglucoside (Ref. 1002/1050).

98
Astaxanthin diglucoside/ Astaxanthin b-D-diglucoside
(3S,3'S)-3,3'-Di(b-D-glucopyranosyloxy)-b,b-carotene-4,4'-dione
VCA1018
Norihiko Misawa
C52H72O14 921.120 Download ChemDraw structure file

lmax (nm): CHCl3-MeOH (2:1) 492 (Ref. 1027)
1H-NMR d(400 MHz, CDCl3-CD3OD 2:1): 1.19 (6H, s, 17 and 17'-Me), 1.31 (6H, s, 16 and 16'-Me), 1.86 (6H, s, 18 and 18'-Me), 1.94 (2H, m, 2 and 2'-H), 1.95-1.97 (12H, s, 19, 20, 19', 20'-Me), 2.18 (2H, m, 2 and 2'-H), 3.27 (2H, m, 5""-H), 3.36 (2H, dd, J 8, 9, 2""-H), 3.41 (2H, t, J 9, 4""-H), 3.43 (2H, t, J 9, 3""-H), 3.70 (2H, dd, J 5, 12, 6""-H), 3.83 (2H, dd, J 3, 12, 6""-H), 4.49 (2H, d, J 8, 1""-H), 4.77 (2H, m, 3 and 3'-H), 6.18-6.67 (14H, m, olefinic-H) (Ref. 1027)
FABMS (pos.) m/z: 921 [M+H]+(Ref. 1027)




an Escherichia coli transformant carrying the intact crt gene cluster from Erwinia uredovora and the Agrobacterium aurantiacum crtW gene (Ref. 1027)
Escherichia coli, which carries the crtE, crtB, crtI, crtY, crtZ and crtX genes derived from the epiphytic bacterium Erwinia uredovora and the crtW gene derived from the marine bacterium Agrobacterium aurantiacum, has produced astaxanthin b-D-diglucoside in addition to astaxanthin b-glucoside (Ref. 1002/1027).

99
Adonixanthin 3'-b-D-glucoside/ Adonixanthin 3'-glucoside
(3S,3'R)-3-Hydroxy-3'-(b-D-glucopyranosyloxy)-b,b-caroten-4-one
VCA1019
Norihiko Misawa
C46H64O8 744.996 Download ChemDraw structure file

lmax (nm): CHCl3-MeOH (2:1) 487 (Ref. 1027)
1H-NMR d(400 MHz, CDCl3-CD3OD 2:1): 1.03 (6H, s, 16' and 17'-Me), 1.18 (3H, s, 17-Me), 1.29 (3H, s, 16-Me), 1.52 (1H, t, J 12, 2'-H), 1.69 (3H, s, 18'-Me), 1.79 (1H, m, 2-H), 1.83 (1H, m, 2'-H), 1.87 (3H, s, 18-Me), 1.92-1.96 (12H, s, 19, 20, 19', and 20'-Me), 2.06 (1H, m, 2-H), 2.08 (1H, m, 4'-H), 2.42 (1H, dd, J 4 and 17, 4'-H), 3.19 (1H, m, 2""-H), 3.27 (1H, m, 5""-H), 3.38 (2H, m, 3"" and 4""-H), 3.72 (1H, dd, J 5 and 12, 6""-H), 3.83 (1H, dd, J 3 and 12, 6""-H), 4.05 (1H, m, 3'-H), 4.28 (1H, dd, J 6 and 14, 3-H), 4.42 (1H, d, J 8 , 1""-H), 6.05-6.70 (14H, olefinic protons) (Ref. 1027)
FABMS (pos.) m/z: 745 [M+H]+ (Ref. 1027)




an Escherichia coli transformant carrying the intact crt gene cluster except for crtZ from Erwinia uredovora and the Agrobacterium aurantiacum crtZ and crtW genes (Ref. 1027)
Escherichia coli, which carries the crtE, crtB, crtI, crtY and crtX genes derived from the epiphytic bacterium Erwinia uredovora, and the crtZ and crtW genes derived from the marine bacterium Agrobacterium aurantiacum, has produced adonixanthin 3?-b-D-glucoside (Ref. 1027).

100
Flexixanthin/ 4-Oxosaproxanthin
(3S)-3,1'-Dihydroxy-3',4'-didehydro-1',2'-dihydro-b,y-caroten-4-one
VCA1020
Norihiko Misawa
C40H54O3 582.855 Download ChemDraw structure file

lmax (nm): acetone 483, 510 (Ref. 1085); acetone 478, 503 (Ref. 1086)
1H-NMR (CDCl3): 1.21 and 1.32 s (16,17-H3), 1.24 s (16', 17'-H3), 1.95 s (18-H3), 1.98 s (19, 20, 18', 19', 20'-H3), 2.32 d (J=7 Hz; 2'-H2), 4.31 dd (J=6, 14 Hz; 3-H), 5.80 m (J=7, 16 Hz; 3'-H) (Ref. 1088)


Flexibacter sp. (Ref. 1085)
Flexibacter strain NIVA BR6-64 (non-gliding bacterium) (Ref. 1086/1088)



Upon alkali treatment, flexixanthin is autoxidized to dehydro-flexixanthin (Ref. 1085).
101
2'-Hydroxyflexixanthin/ Ketomyxol
(3S,2'S)-3,1',2'-Trihydroxy-3',4'-didehydro-1',2'-dihydro-b,y-caroten-4-one
VCA1021
Norihiko Misawa
C40H54O4 598.854 Download ChemDraw structure file

lmax (nm): acetone 478, 504 (Ref. 1086); methanol 293, 317, (452), 479, 503 (Ref. 1346)
1H-NMR (CDCl3): 1.21 and 1.32 s (16,17-H3), 1.95 s (18-H3), 1.98 s (19, 20, 18', 19', 20'-H3), 4.00 d (J=7 Hz; 2'-H), 4.31 dd (3-H), 5.71 dd (J=7, 16 Hz; 3'-H) (Ref. 1088)
CD in EPA of ketomyxol 2'-rhamnoside and 2'-hydroxyflexixanthin (Ref. 1219), and 4-ketomyxol 2'-fucoside (Ref. 1346)

Flexibacter strain NIVA BR6-64 (non-gliding bacterium) (Ref. 1086/1088)
(3S,2'R)-2'-Hydroxyflexixanthin from Taxeobacter (gliding bacteria) (Ref. 1281)
4-Ketomyxol 2'-glycoside is found only in cyanobacteria, and the determination of the sugar moieties, including the L- or D-type and the a- or b-linkage, has been done only for a few species.
(3S,2'S)-4-ketomyxol 2'-methylpentoside from Oscillatoria limosa (Ref. 1217/1219), 4-ketomyxol 2'-rhamnoside from Anacystis nidulans (Ref. 1218) and (3S,2'S)-4-ketomyxol 2'-a-L-fucoside from Anabaena sp. PCC 7120, Anabaena variabilis IAM M3 and Nostoc punctiforme PCC 73102 (Ref. 1346)



Since the name ketomyxoxanthophyll can not specify the sugar moiety and the identification of the sugar moiety is unfeasible in many cyanobacteria, the following naming convention is proposed by (Ref. 1222): when the sugar moiety is unknown, the name is ketomyxol 2'-glycoside, when known, as in the case of rhamnose and a-L-fucose, they should be named ketomyxol 2'-rhamnoside and ketomyxol 2'-a-L-fucoside, respectively.
102
Nostoxanthin
(2R,3R,2'R,3'R)-b,b-Carotene-2,3,2',3'-tetrol
VCA1022
Norihiko Misawa
C40H56O4 600.870 Download ChemDraw structure file

lmax (nm): methanol 275, 341, 425 (shoulder), 448, 475, %III/II=30.9
[Spectrum 1123] (Ref. 1052/1055); acetone 431 (shoulder), 453, 480.5 (Ref. 1077); CHCl3/methanol (2:1) (e) 456 (91.3), 484 (78.1) (Ref. 1040); ethanol 429, 449, 477 (Ref. 1345)
nmax(KBr) cm-1: 3390 m, 3030 w, 2960 s, 2930 s, 2860 s, 1465 m, 1445 m, 1440 w, 1380 m, 1365 m, 1265 w, 1175 w, 1125 w, 1050 m, 970 s (Ref. 1077)
1H-NMR (CDCl3): 1.00 s (16-H3), 1.13 s (17-H3), 1.72 s (18-H3), 1.97 s (19, 20-H3), 2.14 dd (4-Hax), 2.48 dd (4-Heq), 3.33 d (J=10.1 Hz; 2-Hax), 3.84 m (3-Hax) (Ref. 1055); CDCl3 (Ref. 1344)
FD-MS m/z: 600 (100%), 582 (M-18, 2%) (Ref. 1053/1055)
CD spectrum is the same with that of (3R,3'R)-zeaxanthin (Ref. 1055)
CD l nm (de) diethyl ether/isopentane/ethanol (5:5:2): 340 (+ 3.5), 313 (0), 282 (- 16.7), 261 (0), 245 (+ 8.8), 232 (0), 220 (- 11.9), 208 (0) (Ref. 1077); CHCl3/methanol (2:1): 287 (-6.9), 386 (0.4) (Ref. 1040)

Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1055) Porphyrobacter tepidarius (thermophilic aerobic photosynthetic bacterium) (Ref. 1214) Erythromicrobium based on TLC (Ref. 1237)
Anacystis nidulans (cyanobacterium) (Ref. 1077)
Brevundimonas sp. SD212 (marine bacterium) (Ref. 1040)
Rhizobium lupini (soil and root nodule bacterium) (Ref. 1345)


Reaction products of Brevundimonas crtG expessed in E.coli with zeaxanthin background (crtE, crtB, crtI, crtY and crtZ from Pantoea) (Ref. 1344)

103
Nostoxanthin 3-sulfate
Sodium (2R,3R,2'R,3'R)-2,2',3'-trihydroxy-b,b-Caroten-3-yl sulfate
VCA1023
Norihiko Misawa
C40H55O7SNa 702.916 Download ChemDraw structure file

lmax (nm): CHCl3-MeOH (2:1) 458 and 487(Ref. 1040)
nmax(KBr)/cm-1: 3428 (O-H), 1253 (S=O), 1064, 965 (Ref. 1040)
1H-NMR d(500 MHz, CDCl3-CD3OD 2:1): 0.94 and 1.06 (s, 16' and 17'-Me), 0.99 and 1.10 (s, 16 and 17-Me), 1.66 (s, 18 and 18""-Me), 1.92-1.93 (s, 19, 20, 19', and 20'-Me), 2.07 (1H, dd, J 10, 17, 4'-H), 2.28 (1H, dd, J 10, 18, 4-H), 2.39 (1H, dd, J 6, 17, 4'-H), 2.68 (1H, dd, J 7, 18, 4-H), 3.21 (1H, d, J 10, 2'-H), 3.42 (1H, d, J 10, 2-H), 3.73 (1H, dt, J 6, 10, 3'-H), 4.50 (1H, dt, J 7, 10, 3-H), 6.0-6.7 (14H, m, olefinic-H) (Ref. 1040)
FABMS (pos.) m/z: 703 [M+H]+ (Ref. 1040)
CD data: De 341(+1.6), 286 (-10.6) (Ref. 1040)

Flavobacterium sp. strain PC-6 (Ref. 1040)




104
4-Ketonostoxanthin
(2R,3S,2'R,3'R)-2,3,2',3'-Tetrahydroxy-b,b-caroten-4-one
VCA1024
Norihiko Misawa
C40H54O5 614.854 Download ChemDraw structure file

lmax (nm): CHCl3/methanol (2:1) (e) 474 (80.1) (Ref. 1040); ethanol 457, 475 reduced form 429, 449, 477 (Ref. 1345)
1H-NMR (CDCl3/CD3OD 2:1): 0.94 and 1.06 s (16', 17'-H3), 1.20 and 1.22 s (16, 17-H3), 1.66 s (18?-H3), 1.87 s (18-H3), 1.93-1.97 s (19, 20, 19?, 20?-H3), 2.07 dd (J=10, 17 Hz; 4?-H), 2.39 dd (J=6, 17 Hz; 4?-H), 3.21 d (J=10 Hz; 2?-H), 3.45 d (J=11.5 Hz; 2-H), 3.73 dt (J=6, 10 Hz; 3?-H), 4.11 d (J=11.5 Hz; 3-H) (Ref. 1040); (CDCl3) (Ref. 1343)
EIMS (Ref. 1343)
CD l nm (de) CHCl3/methanol (2:1): 304 (-7.5), 394 (0.4) (Ref. 1040); EPA (Ref. 1343); acetylated in dioxane (Ref. 0152)

Pseudomonas paucimobilis IFO 13935 (Sphingomonas paucimobilis) (Ref. 1040) Brevundimonas sp. SD212 (marine bacterium) (Ref. 1343) Rhizobium lupini (soil and root nodule bacterium) (Ref. 0152/1345)




105
Thermozeaxanthin-13/ Zeaxanthin glucoside ester
(3R,3'R)-3'-[(6-O-11-Methyldodecanoyl-b-D-gluycopyranosyl)oxy]-b,b-caroten-3-ol
VCA1025
Norihiko Misawa
C59H90O8 927.341 Download ChemDraw structure file

lmax (nm): acetone 452(Ref. 1042)
1H-NMR d (500 MHz, CDCl3) (G: glucoside moiety, F: fatty acid moiety): 0.86 (6H, d, J=6 Hz, F12, F13-H3), 1.07 (12H, s, 16, 17, 16', 17'-H3), 1.15 (2H, m, F10-H2), 1.23-1.34 (bulk methylenes of fatty acid moiety), 1.48 (1H, m, 2'-H), 1.50 (1H, m, F11-H), 1.58 (1H, m, 2-H), 1.62 (2H, m, F3-H2), 1.74 (6H, s, 18, 18'-H3), 1.77 (1H, m, 2'-H), 1.89 (1H, m, 2-H), 1.96-1.98 (12H, s, 19, 20, 19', 20'-H3), 2.04 (1H, m, 4'-H), 2.13 (1H, m, 4-H), 2.36 (2H, t, J=8 Hz, F2-H2), 2.39 (1H, m, 4'-H), 2.43 (1H, m, 4-H), 3.37 (1H, dd, J=8, 9 Hz, G2-H), 3.41 (1H, t, J=9 Hz, G4-H), 3.48 (1H, m, G5-H), 3.59 (1H, t, J=9 Hz, G3-H), 4.00 (1H, m, 3'-H), 4.03 (1H, m, 3-H), 4.31 (1H, dd, J=2, 12 Hz, G6-H), 4.44 (1H, d, J=8 Hz, G1-H), 4.48 (1H, dd, J=5, 12 Hz, G6-H), 6.1-6.7 (14H, olefinic-H) (Ref. 1042)

CD data: De 286 (-11.3), 248 (7.6) (Ref. 1042)
HPLC (column: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR=11.6 min (Ref. 1041)
Thermus themophilus (thermophilic eubacterium)(Ref. 1042)
Stabilization of liposomal membrans (Ref. 1043)


DELETD
1
106
Thermozeaxanthin-15/ Zeaxanthin glucoside ester
(3R,3'R)-3'-[(6-O-13-Methyltetradecanoyl-b-D-gluycopyranosyl)oxy]-b,b-caroten-3-ol
VCA1026
Norihiko Misawa
C61H94O8 955.394 Download ChemDraw structure file
Stabilization of liposomal membrans (Ref. 1043)
lmax (nm): acetone 452 (Ref. 1042)
1H-NMR d (500 MHz, CDCl3) (G: glucoside moiety, F: fatty acid moiety): 0.86 (6H, d, J=6 Hz, F14, F15-H3), 1.07 (12H, s, 16, 17, 16', 17'-H3), 1.15 (2H, m, F12-H2), 1.23-1.34 (bulk methylenes of fatty acid moiety), 1.48 (1H, m, 2'-H), 1.50 (1H, m, F13-H), 1.58 (1H, m, 2-H), 1.62 (2H, m, F3-H2), 1.74 (6H, s, 18, 18'-H3), 1.77 (1H, m, 2'-H), 1.89 (1H, m, 2-H), 1.96-1.98 (12H, s, 19, 20, 19', 20'-H3), 2.04 (1H, m, 4'-H), 2.13 (1H, m, 4-H), 2.36 (2H, t, J=8 Hz, F2-H2), 2.39 (1H, m, 4'-H), 2.43 (1H, m, 4-H), 3.37 (1H, dd, J=8, 9 Hz, G2-H), 3.41 (1H, t, J=9 Hz, G4-H), 3.48 (1H, m, G5-H), 3.59 (1H, t, J=9 Hz, G3-H), 4.00 (1H, m, 3'-H), 4.03 (1H, m, 3-H), 4.31 (1H, dd, J=2, 12 Hz, G6-H), 4.44 (1H, d, J=8 Hz, G1-H), 4.48 (1H, dd, J=5, 12 Hz, G6-H), 6.1-6.7 (14H, olefinic-H) (Ref. 1042)
HRFABMS (pos.) m/z: 955.7029 [M+H]+ (Ref. 1042)

HPLC (column: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR=11.9 min (Ref. 1041)
Thermus themophilus (thermophilic eubacterium) (Ref. 1042)




107
Thermozeaxanthin-17/ Zeaxanthin glucoside ester
(3R,3'R)-3'-[(6-O-15-Methylhexadecanoyl-b-D-gluycopyranosyl)oxy]-b,b-caroten-3-ol
VCA1027
Norihiko Misawa
C63H98O8 983.447 Download ChemDraw structure file
Stabilization of liposomal membrans (Ref. 1043)
lmax (nm): acetone 452 (Ref. 1042)
1H-NMR d (500 MHz, CDCl3) (G: glucoside moiety, F: fatty acid moiety): 0.86 (6H, d, J=6 Hz, F16, F17-H3), 1.07 (12H, s, 16, 17, 16', 17'-H3), 1.15 (2H, m, F14-H2), 1.23-1.34 (bulk methylenes of fatty acid moiety), 1.48 (1H, m, 2'-H), 1.50 (1H, m, F15-H), 1.58 (1H, m, 2-H), 1.62 (2H, m, F3-H2), 1.74 (6H, s, 18, 18'-H3), 1.77 (1H, m, 2'-H), 1.89 (1H, m, 2-H), 1.96-1.98 (12H, s, 19, 20, 19', 20'-H3), 2.04 (1H, m, 4'-H), 2.13 (1H, m, 4-H), 2.36 (2H, t, J=8 Hz, F2-H2), 2.39 (1H, m, 4'-H), 2.43 (1H, m, 4-H), 3.37 (1H, dd, J=8, 9 Hz, G2-H), 3.41 (1H, t, J=9 Hz, G4-H), 3.48 (1H, m, G5-H), 3.59 (1H, t, J=9 Hz, G3-H), 4.00 (1H, m, 3'-H), 4.03 (1H, m, 3-H), 4.31 (1H, dd, J=2, 12 Hz, G6-H), 4.44 (1H, d, J=8 Hz, G1-H), 4.48 (1H, dd, J=5, 12 Hz, G6-H), 6.1-6.7 (14H, olefinic-H) (Ref. 1042)
HRFABMS (pos.) m/z: 983.7336 [M+H]+ (Ref. 1042)

HPLC (column: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR=12.3 min (Ref. 1041)
Thermus themophilus (thermophilic eubacterium) (Ref. 1042)




108
Thermobiszeaxanthin-13-13/ Zeaxanthin diglucoside diester
(3R,3'R)-3,3'-Di[(6-O-11-methyldodecanoyl-b-D-gluycopyranosyl)oxy]-b,b-carotene
VCA1028
Norihiko Misawa
C78H124O14 1285.811 Download ChemDraw structure file

lmax (nm): acetone 452 (Ref. 1042)
1H-NMR d (500 MHz, CDCl3) (G: glucoside moiety, F: fatty acid moiety): 0.86 (12H, d, J=6 Hz, F12, F13-H3), 1.07 (12H, s, 16, 17-H3), 1.15 (4H, m, F10-H2), 1.23-1.34 (bulk methylenes of fatty acid moiety), 1.50 (2H, m, F11-H), 1.58 (2H, m, 2-H), 1.62 (4H, m, F3-H2), 1.74 (6H, s, 18-H3), 1.89 (2H, m, 2-H), 1.96-1.98 (12H, s, 19, 20-H3), 2.13 (2H, m, 4-H), 2.36 (4H, t, J=8 Hz, F2-H2), 2.43 (2H, m, 4-H), 3.37 (2H, dd, J=8, 9 Hz, G2-H), 3.41 (2H, t, J=9 Hz, G4-H), 3.48 (2H, m, G5-H), 3.59 (2H, t, J=9 Hz, G3-H), 4.03 (2H, m, 3-H), 4.31 (2H, dd, J=2, 12 Hz, G6-H), 4.44 (2H, d, J=8 Hz, G1-H), 4.48 (2H, dd, J=5, 12 Hz, G6-H), 6.1-6.7 (14H, olefinic-H) (Ref. 1042)
HRFABMS (pos.) m/z: 1285.9069 [M+H]+ (Ref. 1042)
CD data: De 284 (-13.5), 248 (+5.8) (Ref. 1042)
HPLC (column: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR=12.5 min (Ref. 1041)
Thermus themophilus (thermophilic eubacterium) (Ref. 1042)




109
Thermobiszeaxanthin-13-15/ Zeaxanthin diglucoside diester
(3R,3'R)-3-[(6-O-13-Methyltetradecanoyl-b-D-gluycopyranosyl)oxy]-3'-[(6-O-11-methyldodecanoyl-b-D-gluycopyranosyl)oxy]-b,b-carotene
VCA1029
Norihiko Misawa
C80H128O14 1313.864 Download ChemDraw structure file

lmax (nm): acetone 452 (Ref. 1042)
1H-NMR d (500 MHz, CDCl3) (G: glucoside moiety, F: fatty acid moiety): 0.86 (12H, d, J=6 Hz, F14, F15, F12', F13'-H3), 1.07 (12H, s, 16, 17-H3), 1.15 (4H, m, F12, F10'-H2), 1.23-1.34 (bulk methylenes of fatty acid moiety), 1.50 (2H, m, F13, F11'-H), 1.58 (2H, m, 2-H), 1.62 (4H, m, F3-H2), 1.74 (6H, s, 18-H3), 1.89 (2H, m, 2-H), 1.96-1.98 (12H, s, 19, 20-H3), 2.13 (2H, m, 4-H), 2.36 (4H, t, J=8 Hz, F2-H2), 2.43 (2H, m, 4-H), 3.37 (2H, dd, J=8, 9 Hz, G2-H), 3.41 (2H, t, J=9 Hz, G4-H), 3.48 (2H, m, G5-H), 3.59 (2H, t, J=9 Hz, G3-H), 4.03 (2H, m, 3-H), 4.31 (2H, dd, J=2, 12 Hz, G6-H), 4.44 (2H, d, J=8 Hz, G1-H), 4.48 (2H, dd, J=5, 12 Hz, G6-H), 6.1-6.7 (14H, olefinic-H) (Ref. 1042)


HPLC (column: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR=12.7 min (Ref. 1041)
Thermus themophilus (thermophilic eubacterium) (Ref. 1042)




1
110
Thermobiszeaxanthin-15-15/ Zeaxanthin diglucoside diester
(3R,3'R)-3,3'-Di[(6-O-13-methyltetradecanoyl-b-D-gluycopyranosyl)oxy]-b,b-carotene
VCA1030
Norihiko Misawa
C82H132O14 1341.917 Download ChemDraw structure file

lmax (nm): acetone 452 (Ref. 1042)
1H-NMR d (500 MHz, CDCl3) (G: glucoside moiety, F: fatty acid moiety): 0.86 (12H, d, J=6 Hz, F14, F15-H3), 1.07 (12H, s, 16, 17-H3), 1.15 (4H, m, F12-H2), 1.23-1.34 (bulk methylenes of fatty acid moiety), 1.50 (2H, m, F13-H), 1.58 (2H, m, 2-H), 1.62 (4H, m, F3-H2), 1.74 (6H, s, 18-H3), 1.89 (2H, m, 2-H), 1.96-1.98 (12H, s, 19, 20-H3), 2.13 (2H, m, 4-H), 2.36 (4H, t, J=8 Hz, F2-H2), 2.43 (2H, m, 4-H), 3.37 (2H, dd, J=8, 9 Hz, G2-H), 3.41 (2H, t, J=9 Hz, G4-H), 3.48 (2H, m, G5-H), 3.59 (2H, t, J=9 Hz, G3-H), 4.03 (2H, m, 3-H), 4.31 (2H, dd, J=2, 12 Hz, G6-H), 4.44 (2H, d, J=8 Hz, G1-H), 4.48 (2H, dd, J=5, 12 Hz, G6-H), 6.1-6.7 (14H, olefinic-H) (Ref. 1042)


HPLC (column: TSK gel ODS-80Ts (Tosoh) 0.46times15 cm, eluent and flow: 1.0 ml/min, H2O-MeOH 5:95 for 5 min, then 5 min-linear gradient MeOH-THF 7:3) tR=12.9 min (Ref. 1041)
Thermus themophilus (thermophilic eubacterium) (Ref. 1042)




1
111
Chloroxanthin/ Hydroxyneurosporene/ OH-Neurosporene
1,2,7',8'-Tetrahydro-y,y-caroten-1-ol
VCA1031
Norihiko Misawa
C40H60O 556.904 Download ChemDraw structure file

lmax (nm): methanol 328, 412, 437, 465, %III/II=87.1
[Spectrum 1124] (Ref. 1052)




Rhodobacter, Rhodovulum, Rhodobaca, Rhodoferax, Rubrivivax and Roseobacrer species (purple photosynthetic bacteria); Rhodobacter sphaeroides Ga mutant (Ref. 1054)

This carotenoid is an intermediate in the spheroidene pathway of purple photosynthetic bacteria. The Rhodobacter sphaeroides Ga mutant also accumulates chloroxanthin (Ref. 1054).
The crtD mutant of Rhodobacter sphaeroides cultured under anaerobic conditions accumulates neurosporene, chloroxanthin and methoxyneurosporene (Ref. 1089). Chloroxanthin is the substrate of CrtD of Rhodobacter sphaeoides and Rubrivivax gelatinosus in vitro. The hydrogen acceptor in this reaction is molecular oxygen (Ref. 1118/1192).
An Escherichia coli transformant carrying the Erwinia uredovora crtE and crtB and Rhodobacter capsulatus crtI and crtC genes (Ref. 1065).
Neurosporene is a substrate of CrtC from Rubrivivax gelatinosus and Rhodobacter capsulatus (photosynthetic bacteria) to produce chloroxanthin. Chloroxanthin is changed to dihydroxyneurosporene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).
[Table 1018]
Escherichia coli, which carries the crtE and crtB genes from the epiphytic bacterium Erwinia uredovora, and the crtI and crtC genes from the purple photosynthetic bacterium Rhodobacter capsulatus, has produced chloroxanthin (Ref. 1065).

112
Rhodopin/ OH-Lycopene
1,2-Dihydro-y,y-caroten-1-ol
VCA1032
Norihiko Misawa
C40H58O 554.888 Download ChemDraw structure file

lmax (nm): methanol 293, 362, 444, 470, 500, %III/II=73 (Ref. 1064)
HPLC eluent 447, 474, 505, %III/II=77
[Spectrum 1125] (Ref. 1067)
n-hexane 446.0, 471.0, 501.5 (Ref. 1132)
1H-NMR (CDCl3) (Ref. 1108/1132) 1H- and 13C-NMR in CDCl3 (Ref. 1251)
FD-MS m/z: 554 (Ref. 1064/1067)(Ref. 0059)
Ramann spectrum in n-hexane (Ref. 1132)

Rhodospirillum photometricum, Rhodospirillum molischianum, Rhodospirillum fulvum, Rhodopseudomonas palustris, Rhodopseudomonas cryptolactis, Rhodomicrobium vannielii, Thiospirillum jenense, Chromatium tepidum, Thiorhodococcus minus, Ectothiorhodospira marismortui (purple photosynthetic bacteria) (Ref. 1054)

An intermediate in the normal spirilloxanthin pathway of purple photosynthetic bacteria (Ref. 1054).
Rhodopin is accumulated in many purple photosynthetic bacteria due to the low activity of CrtD; Rhodospirillum photometricum, Rhodospirillum molischianum, Rhodospirillum fulvum, Rhodopseudomonas palustris, Rhodopseudomonas cryptolactis, Rhodomicrobium vannielii, Thiospirillum jenense, Chromatium tepidum, Thiorhodococcus minus, and Ectothiorhodospira marismortui (Ref. 1054).
Rhodopin is the substrate of CrtD of Rubrivivax gelatinosus in vitro (Ref. 1192).
Lycopene is a substrate of CrtC from Rubrivivax gelatinosus and Rhodobacter capsulatus (photosynthetic bacteria) to produce rhodopin. Rhodopin is changed to dihydroxylycopene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).
[Table 1003]

Bond lengths, bond angles and dihedral angles determined by AM1 calculation (Ref. 1251).
113
3,4-Dehydrorhodopin/ 3,4-Didehydrorhodopin/ 1-Hydroxy-3,4-didehydrolycopene
3,4-Didehydro-1,2-dihydro-y,y-caroten-1-ol
VCA1033
Norihiko Misawa
C40H56O 552.872 Download ChemDraw structure file

m.p. 194 C (Ref. 1341)
lmax (nm): methanol 305, 373, 456, 481, 513, %III/II=59 (Ref. 1064); petrol 455, 482, 517; acetone 459, 486, 520 (e 133, 195, 175 *103) (Ref. 1341)

FD-MS m/z: 552 (Ref. 1064)


Rhodospirillum photometricum, Rhodospirillum molischianum, Rhodospirillum fulvum, Rhodopseudomonas palustris, Rhodopseudomonas cryptolactis, Rhodomicrobium vannielii, Thiospirillum jenense, Chromatium tepidum, Thiorhodococcus minus, Ectothiorhodospira marismortui (purple photosynthetic bacteria) (Ref. 1054)
An intermediate in the normal spirilloxanthin pathway of purple photosynthetic bacteria (Ref. 1054).
[Table 1004] 3,4-Dehydrorhodopin is changed to 1,1'-(OH)2-3,4-didehydrolycopene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).


114
Dihydroxylycopene/ OH-Rhodopin
1,2,1',2'-Tetrahydro-y,y-carotene-1,1'-diol
VCA1034
Norihiko Misawa
C40H60O2 572.903 Download ChemDraw structure file

lmax (nm): methanol 293, 360, 443, 469, 500, %III/II=71 (Ref. 1064)

FD-MS m/z: 572 (Ref. 1064)(Ref. 0059)




Dihydroxylycopene is not the substrate of CrtD from Rubrivivax gelatinosus in vitro (Ref. 1192). an Escherichia coli transformant carrying the Erwinia uredovora crtE, crtB and crtI and Rhodobacter capsulatus crtC genes (Ref. 1064/1065). Rhodopin is changed to dihydroxylycopene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).
Escherichia coli, which carries the crtE, crtB and crtI genes from the epiphytic bacterium Erwinia uredovora, and the crtC gene from the purple photosynthetic bacterium Rhodobacter capsulatus, has synthesized 1,1'-dihydroxylycopene (Ref. 1064/1065).

115
3-Hydroxy-b-zeacarotene/ 3-OH-b-Zeacarotene
(3R)-7',8'-Dihydro-b,y-caroten-3-ol
VCA1035
Norihiko Misawa
C40H58O 554.888 Download ChemDraw structure file








Escherichia coli, which carries the crtE, crtB, crtY and crtZ genes from the epiphytic bacterium Erwinia uredovora, and the crtI gene from the purple photosynthetic bacterium Rhodobacter capsulatus, has synthesized 3-hydroxy-b-zeacarotene as an intermediate (Ref. 1056).

116
1'-Hydroxy-g-carotene/ 1'-OH-g-Carotene/ (Carotenoid B)
1',2'-Dihydro-b,y-caroten-1'-ol
VCA1036
Norihiko Misawa
C40H58O 554.888 Download ChemDraw structure file

lmax (nm): methanol 281, 346, 436 (shoulder), 458, 487, %III/II=44.3
[Spectrum 1126] (Ref. 1052/1064/1105); hexane 433, 457, 487, %III/II=37.6 (Ref. 1108)
1H-NMR (CDCl3) (Ref. 1108)
FD-MS m/z: 554 (Ref. 1053/1064/1103/1105/1108)


Chlorobium (present name, Chlorobaculum) tepidum strain TNO (green sulfur bacterium) (Ref. 1103)
Chloroflexus aurantiacus (Ref. 1105) and Chloroflexus aggregans (S. Takaichi) (Ref. 1106) (green filamentous bacteria)
Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1094/1111)

Influence of growth temperature on carotenoid content and composition in Rhodococcus rhodochrous (Ref. 1109)
1'-OH-g-Carotene is produced by CrtC, carotenoid 1',2'-hydrotase, from g-Carotene in Chlorobium tepidum (green sulfur bcterium) (Ref. 1295).

117
Spheroidene
1-Methoxy-3,4-didehydro-1,2,7',8'-tetrahydro-y,y-carotene
VCA1037
Norihiko Misawa
SE
C41H60O 568.914 Download ChemDraw structure file
Carotenoid compositions in the RC-LH1 and LH2 complexes from the anaerobic and semi-aerobic cultures of the purple photosynthetic bacterium, Rubrivivax gelatinosus (Ref. 1076)
lmax (nm): methanol 279, 344, 427, 452, 482, %III/II=78.5
[Spectrum 1127] (Ref. 1052/1100)

FD-MS m/z: 568 (Ref. 1100)
Fluorescence spectra in n-hexane and CS2 (Ref. 1060)

Rhodobaca bogoriensis (Ref. 1100), Rhodovulum sulfidophilum (Ref. 1350), Rhodobacter, Rhodoferax, Rubrivivax and Roseobacrer species (purple phtosynthetic bacteria) (Ref. 1054)

Rhodobacter, Rhodovulum and Rhodobaca have only the spheroidene pathway, while Rubrivivax, Rhodoferax and Roseobacter have both the spheroidene and spirilloxanthin pathway (Ref. 1054).
Spheroidene is one of final products in the spheroidene pathway under the anaerobic conditions of the purple photosynthetic bacteria such as Rhodobacter, Rhodovulum, Rhodobaca, Rhodoferax, Rubrivivax, and Roseobacrer species (Ref. 1054). The crtA mutant of Rhodobacter sphaeroides cultured under anaerobic conditions also accumulatates spheroidene and OH-spheroidene (Ref. 1089).
The methyl residue in the methoxy group of spheroidene has been shown to originate from S-adenosylmethionine in Rhodobacter sphaeroides (Ref. 1101) and Rhodobacter capsulatus (Ref. 1102/1259).
Water is a source of oxygen for the 1-methoxy group of spheroidene in Rhodobacter (Ref. 1155). Spheroidene is changed to OH-shperoidene by CrtC from Rvi. gelatinosus, not by that from Rba. capsulatus (Ref. 1255).
[Table 1011]
The crt gene cluster for spheroidene biosynthesis has been cloned from Rhodobacter capsulatus, and its DNA sequence has been published in 1989 for the first time (Ref. 1032).

118
Demethylspheroidene/ (Demethylated spheroidene)
3,4-Didehydro-1,2,7',8'-tetrahydro-y,y-caroten-1-ol
VCA1038
Norihiko Misawa
DMS
C40H58O 554.888 Download ChemDraw structure file

lmax (nm): methanol 279, 345, 427, 452, 482, %III/II=75
[Spectrum 1128] (Ref. 1064/1100)

FD-MS m/z: 554 (Ref. 1064/1260)


Rhodobaca bogoriensis (Ref. 1100), Rhodovulum sulfidophilum (Ref. 1350), Rhodobacter, Rhodoferax, Rubrivivax and Roseobacrer species (purple photosynthetic bacteria) (Ref. 1054)

An intermediate in the spheroidene pathway of purple photosynthetic bacteria (Ref. 1054). Demethylspheroidene is changed to OH-demethylshperoidene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).
[Table 1012]
Escherichia coli, which carries the crtE and crtB genes from the epiphytic bacterium Erwinia uredovora, the crtI and crtC genes from the purple photosynthetic bacterium Rhodobacter capsulatus and the crtD gene from Rhodobacter sphaeroides, has synthesized demethylspheroidene (Ref. 1065).
The crtF mutant of Rhodobacter capsulatus accumulats DMS and DMSO (Ref. 1102). The crtA and crtF mutant of Rubrivivax gelatinosus (photosynthetic bacteria) produces this carotenoid (Ref. 1260).

119
Spheroidenone
1-Methoxy-3,4-didehydro-1,2,7',8'-tetrahydro-y,y-caroten-2-one
VCA1039
Norihiko Misawa
SO
C41H58O2 582.898 Download ChemDraw structure file
Carotenoid compositions in the RC-LH1 and LH2 complexes from the anaerobic and semi-aerobic cultures of the purple photosynthetic bacterium, Rubrivivax gelatinosus (Ref. 1076).
In the reaction center of Rhodobacter sphaeroides, conformation of spheroidenone is 15-cis form from the X-ray crystal structure (Ref. 1139).
lmax (nm): hexane 482, 513; benzene 499, 532 (shoulder) (Ref. 1073); methanol 298, 377, 483
[Spectrum 1129] (Ref. 1075/1100), reduced form 297, 345, 428, 452, 482 %III/II=67
[Spectrum 1129] (Ref. 1100)
1H-NMR (CDCl3): 1.34 s (16, 17-H3), 1.59 s (16'-H3), 1.60 s (18'-H3), 1.67 s (17'-H3), 1.81 s (19'-H3), 1.95 s (20'-H3), 1.96 s (20-H3), 1.99 s (18, 19-H3), 2.04 (3'-H2), 2.12 (4', 7', 8'-H2), 3.21 s (1-O-CH3), 5.08 t (J=7 Hz; 2'-H), 5.11 t (J=8 Hz; 6'-H), 5.95 d (J=11 Hz; 10'-H), 6.75 d (J=16 Hz; 3-H), 7.46 d (J=16 Hz; 4-H) (Ref. 1075)
FD-MS m/z: 582 (Ref. 1075/1100)(Ref. 0059)

Silicagel G TLC, benzene-acetone (20:3): Rf=0.57 (Ref. 1073)
Rhodobaca bogoriensis (Ref. 1100), Rhodovulum sulfidophilum (Ref. 1350), Rhodobacter, Rhodoferax, Rubrivivax and Roseobacrer species (the purple photosynthetic bacteria) (under semi-aerobic culture) (Ref. 1054)
Major carotneoid of Roseobacter denitrificans (=Erythrobacter sp. OCh 114) (Ref. 1073) and Dinoroseobacter shibae (Ref. 1348) (aerobic photosynthetic bacterium)

Rhodobacter, Rhodovulum and Rhodobaca have only the spheroidene pathway, while Rubrivivax, Rhodoferax and Roseobacter have both the spheroidene and spirilloxanthin pathway (Ref. 1054). Spheroidenone is one of final products in the spheroidene pathway under semi-aerobic culture of purple photosynthetic bacteria such as Rhodobacter, Rhodovulum, Rhodobaca, Rhodoferax, Rubrivivax and Roseobacrer species. (Ref. 1054).
The methyl residue in the methoxy group of spheroidenone is originated from S-adenosylmethionine in Rhodobacter sphaeroides (Ref. 1101).
Water is a source of oxygen for the 1-methoxy group of spheroidenone in Rhodobacter, but water and CO2 are not that for the 2-oxo group (Ref. 1155).
[Table 1013]

The keto group at C-2 of spheroidenone is single bond cis-fonformation for the conjugated double bond determined by NMR (Ref. 1075).
120
Spirilloxanthin
1,1'-Dimethoxy-3,4,3',4'-tetradehydro-1,2,1',2'-tetrahydro-y,y-carotene
VCA1040
Norihiko Misawa
C42H60O2 596.925 Download ChemDraw structure file
Carotenoid compositions in the RC-LH1 and LH2 complexes from the anaerobic and semi-aerobic cultures of Rubrivivax gelatinosus (purple photosynthetic bacterium) (Ref. 1076).
15-Cis form is bound to the reaction center complex, and all-trans one is bound to the light-harvesting complex of Rhodospirillum rubrum S1 (purple photosynthetic bacterium) (Ref. 1120).
m.p. 219.5-220 C (Ref. 1341)
lmax (nm): methanol 315, 385, 464, 492, 524, %III/II=63.8
[Spectrum 1130] (Ref. 1052/1055); HPLC eluent 469, 498, 531, %III/II=64 (Ref. 1067); n-hexane (all-trans) 365, 386, 463, 492, 526; n-hexane (13-cis) 368, 386, 460, 488, 520; n-hexane (15-cis) 367, 385, 462, 490, 524 (Ref. 1120); n-hexane 464.0, 492.5, 527.0 (Ref. 1132); HPLC eluent (hexane/ethylisopropylamine/acetone 98.5/0.05/1.5) (all-E) 388, 466, 494, 528, %III/II=73, %DB/DII=8; (13Z; 5Z,13'Z; 5Z,13Z; 5Z,9'Z; 9Z; 5Z,9Z; 5Z) (Ref. 1181); benzene 480, 510, 546 (e 118, 169, 146 *103) (Ref. 1341)
1H-NMR (CDCl3): 1.16 s (16, 17-H3), 1.93 s (18-H3), 1.98 s (19-H3), 1.99 s (20-H3), 2.32 d (J=7.3 Hz; 2-H2), 3.23 s (1-O-CH3) (Ref. 1071); (CDCl3) (Ref. 1132); (CDCl3) all-E, 5Z, 9Z (Ref. 1181) 1H- and 13C-NMR in CDCl3 (Ref. 1251)
FD-MS m/z: 596 (Ref. 1053/1055/1067)(Ref. 0059)
Ramann spectrum in n-hexane (Ref. 1132)
All-E and some Z isomers produced by the iodine-catalyzed stereo mutation mixture are separated by preparative HPLC (Chromosphere SI-5, 250 X 10 mm) (Ref. 1181).
Rhodospirillum rubrum, Rhodovibrio (=Rhodospirillum) sodomense, Rhodopseudomonas julia, Thiocapsa (=Amoebobacter) roseus, Thiocapsa roseopersicina, Halorhodospira halophila (purple phtosynthetic bacteria) (Ref. 1054)
Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1055)
Bradyrhizobium sp. strains (aerobic photosynthetic bacteria) (Ref. 1156)
Spirilloxanthin is the end product of the normal spirilloxanthin pathway, and more than half species of the purple photosynthetic bacteria have spirilloxanthin as major carotenoid. These bacterial species are Rhodospirillum rubrum, Rhodovibrio (=Rhodospirillum) sodomense, Rhodopseudomonas julia, Thiocapsa (=Amoebobacter) roseus, Thiocapsa roseopersicina, and Halorhodospira halophila (Ref. 1054).
[Table 1008]
Two distinct crt gene clusters for spirilloxanthin (crtE.s, crtB.s, crtI.s, crtC, crtD and crtF) and canthaxanthin (crtE.c, crtB.c, crtI.c, crtY and crtW) synthesis are isolated from Bradyrhizobium sp. strain ORS278 (aerobic photosynthetic bacterium) and functionaly identified (Ref. 1121/1284).
Bond lengths, bond angles and dihedral angles determined by AM1 calculation (Ref. 1251).
121
b-Isorenieratene
b,f-Carotene
VCA1041
Norihiko Misawa
C40H52 532.841 Download ChemDraw structure file




HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=12.0 min (Ref. 1057)
Chlorobium phaeobacteroides 1549 (new name, Chlorobaculum limnaeum 1549; green-sulfur photosynthetic bacterium), the content of this carotenoid incleases under low light culture (Ref. 1282).

b-Isorenieratene is the biosynthetic intermediate through desaturation reactions from b-carotene to isorenieratene (Ref. 1093).


122
Isorenieratene/ (Leprotene)
f,f-Carotene
VCA1042
Norihiko Misawa
C40H48 528.809 Download ChemDraw structure file

198-199 degC (Ref. 1332)
lmax (nm): acetonitrile/methanol/THF (58:35:7) 283, 352, 431 (shoulder), 452, 472, %III/II=26
[Spectrum 1013] (Ref. 1057); benzene 443, 465, 493 (Ref. 1316); petroleum ether (425), 450, 477 (Ref. 1332)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=8.2 min (Ref. 1057)
Streptomyces griseus (actinomycetes) (Ref. 1093), Brevibacterium linens (Gram-positive coryneform bacterium) (Ref. 1134).
Chlorobium phaeobacteroides 1549 (new name, Chlorobaculum limnaeum 1549; green-sulfur photosynthetic bacterium), the content of this carotenoid incleases under low light culture (Ref. 1282).
Reniera japonica (sea sponge) (Ref. 1331). Suberites sericeus (sea sponge) contains isorenieratene, isorenieracistene (7-cis isorenieratene) and isorenieradicistene (7,7'-dicis isorenieratene) (Ref. 1332).

Genes involved in the synthesis of isorenieratene have been clone from Streptomyces griseus (Ref. 1093), Brevibacterium linens (Ref. 1124) and Mycobacterium aurum (Ref. 1127). CrtU synthesises isorenieratene from b-carotene (Ref. 1093/1124/1127).

123
d-Carotene/ e,y-Carotene
(6R)-e,y-Carotene
VCA1043
Norihiko Misawa
C40H56 536.873 Download ChemDraw structure file







Lycopene e-cyclase CrtL-e from plants, such as, Arabidopsis, tomato, potato and marigold, adds only one ring to lycopene, forming the monocyclic d-carotene, but can not add a second ring to form e-carotene. When combined, lycopene b- and e-cyclases convert lycopene to a-carotene, a carotenoid with one b and one e ring (Ref. 1015/1239). Exceptionally, lycopene e-cyclase from lettuce produces e-carotene (Ref. 1148). Lycopene e- and b-cyclases, neoxanthin synthase (NSY) and capsanthin-capsorubin synthase (CCS) have high homology (Ref. 1015/1148/1239). CrtL-e from the marine cyanobacterium Prochlorococcus marinus MED4 has bifunctional activety; lycopene e- and b-cyclases (Ref. 1242).

124
e-Carotene/ e,e-Carotene
(6R,6'R)-e,e-Carotene
VCA1044
Norihiko Misawa
C40H56 536.873 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 266, 329, 417, 441, 470, %III/II=89
[Spectrum 1014] (Ref. 1057)



HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=16.2 min (Ref. 1057)



Usually the substrate of lycopen e-cyclase from plants is only lycopene, and d-carotene and g-carotene are not, while lycopene e-cyclase from Lactuca sativa (romaine lettuce) can cyclize d-carotene to form e-carotene and the final product is lactucaxanthin (tunaxanthin F). A single amino acid is found to act as a molecular switch: one e-ring or two (Ref. 1148).

125
Bisdehydrolycopene/ Tetradehydrolycopene
3,4,3',4'-Tetradehydro-y,y-carotene
VCA1045
Norihiko Misawa
C40H52 532.841 Download ChemDraw structure file

lmax (nm): HPLC eluent 480, 510, 540 (Ref. 1049)





an Escherichia coli transformant carrying the Erwinia uredovora crtE and crtB genes, and the crtI gene (crtI14) shuffled between the corresponding genes of E. uredovora and E. herbicola (Ref. 1049)
A special phytoene desaturase gene (crtI14), which has been shuffled between the crtI genes of Erwinia uredovora and E. herbicola, has mediated the synthesis of bisdehydrolycopene that is a six-step-desaturation product from phytoene (Ref. 1049).

126
Rubixanthin/ 3-Hydroxy-g-carotene/ 3-OH-g-Carotene
(3R)-b,y-Caroten-3-ol
VCA1046
Norihiko Misawa
C40H56O 552.872 Download ChemDraw structure file

lmax (nm): methanol 282, 346, 436 (shoulder), 458, 489, %III/II=48.1
[Spectrum 1131] (Ref. 1052/1055)

FD-MS m/z: 552 (Ref. 1055)(Ref. 0059)


Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1055)




127
Asymmetric z-carotene/ Asym. z-carotene/ 7,8,11,12-Tetrahydrolycopene
7,8,11,12-Tetrahydro-y,y-carotene
VCA1047
Norihiko Misawa
C40H60 540.904 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 238, 298, 377, 397, 421, %III/II=89
[Spectrum 1006] (Ref. 1057); methanol 295, 374, 395, 419, %III/II=89.9
[Spectrum 1115] (Ref. 1052)



HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=16.8 min (Ref. 1057)
Rhdospirillum rubrum, Rhodopila glabiformis, Rhodomicrobium vannielii, Blastochloris viridis (Purple photosynthetic bacteria). Chlorobium tepidum (Green sulfur photosynthetic bacteria). Chloroflexus aurantiacus (Green filamentous photosynthetic bacteria) (Ref. 1054). Erythrobacter longus (aerobic photosynthetic bacteria) (Ref. 1055)



128
Rhodopin glucoside/ Rhodopin b-D-glucoside
1-b-D-Glucopyranosyloxy-1,2-dihydro-y,y-carotene
VCA1048
Norihiko Misawa
C46H68O6 717.029 Download ChemDraw structure file
One component of the light-harvesting antenna comples (LH2, B800-850) from the purple photosynthetic bacterium, Rhodopseudomonas acidophilla strain 10050; 9 X (one rhodopin glucoside, one B800 BChl, two B850 BChl, one a-polypeptide and one b-polypeptide) (Ref. 1059). Van der Waals contacts of rhodopin glucoside with bacteriochlorophyll (B800) are studied, and the hydrogen positions are determined from quantum chemical calculations at the Hartree-Fock level (Ref. 1232). Apoprotein contacts to the rhodopin glucoside chromophore (Ref. 1304).

FD-MS: 716 (S. Takaichi)


Rhodopseudomonas acidophilla strain 10050 (present name: Rhodoblastus acidophilus; purple photosynthetic bacterium) (Ref. 1059/1304)
Strain 10050: high light culture (160 mmols/s/m2), rhodopin glucoside 80%; strain 7050: high light culture, rhodopin glucoside 34%, low light culture (10 mmols/s/m2), rhodopinal 5%, rhodopin goucoside 1%, rhodopinol glucoside 7% and rhodopinal glucoside 61%; strain 7750: high light culture, rhodopin glucoside 53%, low light culture, rhodopin goucoside 24% (Ref. 1054).



Glycoside moiety is b-D-glucoside by 1H-NMR (S. Takaichi).
129
4,4'-Diapophytoene/ Dehydrosqualene
7,8,11,12,7',8',11',12'-Octahydro-4,4'-diapo-y,y-carotene
VCA1049
Norihiko Misawa
C30H48 408.702 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 277 (shoulder), 287, 296 (shoulder)
[Spectrum 1015] (Ref. 1057/1069); petroleum 275, 286 (Ref. 1364/1368), 297; ethanol (277), 286, 298 (Ref. 1364)

FD-MS m/z: 408 (Ref. 1069); (Ref. 1368)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=10.0 min (Ref. 1057/1069)
Heliobacillus mobilis, Heliophilum fasciatum, Hebacterium chlorum, Heliobacteirum modesticaldum (Heliobacteria) (Ref. 1069)
Streptococcus faecium UNH 564P 43% of total) (Ref. 1363/1368) Staphylococcus aureus 209P (75% of total) (Ref. 1364)

The symmetrical carbon skeleton is reduced from biosynthetic labelling studies in Streptococcus faecium UNH 564P (Ref. 1363/1369).
A 4,4'-diapophytoene synthase gene (crtM), which mediates the synthetic reaction from farnesyl diphosphate (FPP) to 4,4'-diapophytoene (dehydrosqualene), has been cloned from Staphylococcus aureus (Ref. 1092). The gene diapophytoene desaturase crtN is found from Heliobacillus mobilis based on the sequence similarity. (Ref. 1070)

130
4,4'-Diaponeurosporene
7,8-Dihydro-4,4'-diapo-y,y-carotene
VCA1050
Norihiko Misawa
C30H42 402.654 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 267, 331, 416, 439, 468, %III/II=95
[Spectrum 1016] (Ref. 1057/1069); HPLC eluent 416, 438, 468 (Ref. 1117); methanol
[Spectrum 1132] ; petroleum (390), 412, 436, 466; ethanol (391), 414, 438, 467.5 (Ref. 1364); petroleum (390), 412, 435, 465 (Ref. 1368)

FD-MS m/z: 402 (Ref. 1069); LC/MS m/z: 403 [M+H]+ (Ref. 1117); (Ref. 1368)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=5.9 min (Ref. 1057/1069)
Major carotenoid of Heliobacillus mobilis, Heliophilum fasciatum, Hebacterium chlorum, Heliobacteirum modesticaldum, Heliobacterium gestii (heliobacteria) (Ref. 1069); and alkaliphilic heliobacteria, Heliorestis daurensis and Heliorestis baculata, produces 4,4'-diaponeurosporen and OH-diaponeurosporene glucoside esters (Ref. 1270).
Staphylococcus aureus Newman (Ref. 1092), Staphylococcus aureus 209P (1% of total) (Ref. 1364), Streptococcus faecium UNH 564P (13% of total) (Ref. 1363), and Staphylococcus carnosus, Lactobacillus plantarum, Enterococcus mundtii, Enterococcus sulfureus (Ref. 1117).

Characteristics of CrtN from Staphylococcus aureus; membrane protein, 52 kDa single peptide, substrate specificity, FAD-dependent and diphenylamine inhibition (Ref. 1128/1129).
An Escherichia coli transformant carrying the S. aureus crtM and crtN genes produces 4,4'-diaponeurosporene (Ref. 1092/1215).
The symmetrical carbon skeleton is reduced from biosynthetic labelling studies in Streptococcus faecium UNH 564P (Ref. 1363/1369).
A 4,4'-diapophytoene desaturase gene (crtN), which mediates the desaturation reactions from 4,4'-diapophytoene (dehydrosqualene) to 4,4'-diaponeurosporene, has been cloned from Staphylococcus aureus (Ref. 1092). Another crtN gene has also been found in Heliobacillus mobilis based on the sequence similarity (Ref. 1070).

131
h-Carotene/ Tetrahydro-b-carotene
7,8,7',8'-Tetrahydro-b,b-carotene
VCA1051
Shinichi Takaichi
C40H60 540.904 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 234, 293, 381, 402, 427, %III/II=103
[Spectrum 1017] (Ref. 1056/1057)
1H-NMR (CDCl3): 1.01 s (16, 17-H3), 1.61 s (18-H3), 1.83 s (19-H3), 1.93 s (20-H3) (Ref. 1056/1063)
FD-MS m/z: 540 (Ref. 1056)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=31.3 min (Ref. 1056/1057)



When lycopene cyclase from Erwinia uredovara (crtY) was expressed in Escherichia coli with a %z-carotene background, this carotenoid was produced. The substrate of crtY is not only y end group but 7,8-dihydro-y end group. (Ref. 1056)

132
Caloxanthin
(2R,3R,3'R)-b,b-Carotene-2,3,3'-triol
VCA1052
Shinichi Takaichi
C40H56O3 584.871 Download ChemDraw structure file

lmax (nm): methanol 273, 339, 427 (shoulder), 448, 475, %III/II=31.6
[Spectrum 1133] (Ref. 1052/1055); acetone 430 (shoulder), 453.5, 480.5 (Ref. 1077)
nKBrmax cm-1: 3400 m, 3030 w, 2960 s, 2930 s, 2860 s, 1465 m, 1440 m, 1380 w, 1180 w, 1120 m, 1075 w, 1055 m, 970 m (Ref. 1077)
1H-NMR (CDCl3): 1.00 s (16-H3), 1.07 s (16', 17'-H3), 1.13 s (17-H3), 1.38 d (3'-OH), 1.48 dd (2'-Hax), 1.72 s (18-H3), 1.74 s (18'-H3), ca. 1.77 (2'-Heq), 1.97 s (19, 20, 19', 20'-H3), 2.05 dd (4-Hax), ca. 2.20 (4'-Hax), 2.39 dd (4'-Heq), 2.48 dd (4-Heq), 3.33 d (J=10.1 Hz; 2-Hax), 3.84 m (3-Hax), 4.00 m (3'-Hax) (Ref. 1055); CDCl3 (Ref. 1344)
FD-MS m/z: 584 (Ref. 1055)
CD spectrum is the same with that of (3R,3'R)-zeaxanthin (Ref. 1055) CD l nm (de) diethyl ether/isopentane/ethanol (5:5:2): 337 (+ 4.6), 312 (0), 283 (- 16), 260 (0), 244 (+ 8.8), 231 (0), 222 (- 10.4), 212 (0) (Ref. 1077)

Porphyrobacter, Erythrobacter, and Erythromicrobium based on TLC (aerobic photosynthetic bacteria) (Ref. 1237) Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1055)


Reaction products of Brevundimonas crtG expessed in E.coli with zeaxanthin background (crtE, crtB, crtI, crtY and crtZ from Pantoea) (Ref. 1344)

133
Anhydrorhodovibrin
1-Methoxy-3,4-didehydro-1,2-dihydro-y,y-carotene
VCA1053
Shinichi Takaichi
AHRV
C41H58O 566.899 Download ChemDraw structure file

lmax (nm): methanol 304, 372, 454, 480, 513, %III/II=65.2
[Spectrum 1134] (Ref. 1052/1055); n-hexane 453.5, 481.5, 514.5 (Ref. 1132)
1H-NMR (CDCl3) (Ref. 1132) 1H- and 13C-NMR in CDCl3 (Ref. 1251)
FD-MS m/z: 566 (Ref. 1055)(Ref. 0059)
Ramann spectrum in n-hexane (Ref. 1132)

Purple photosynthetic bacteria. (Ref. 1054) Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1055)

An intermediate in the normal spirilloxanthin pathway of purple photosynthetic bacteria (Ref. 1054/1055).
[Table 1005]

Bond lengths, bond angles and dihedral angles determined by AM1 calculation (Ref. 1251).
134
Rhodovibrin
1'-Methoxy-3',4'-didehydro-1,2,1',2'-tetrahydro-y,y-caroten-1-ol
VCA1054
Shinichi Takaichi
RV
C41H60O2 584.914 Download ChemDraw structure file

lmax (nm): methanol 304, 372, 479, 496, 511, %III/II=45
[Spectrum 1135]; n-hexane 454.0, 481.5, 514.5 (Ref. 1132)
1H-NMR (CDCl3) (Ref. 1132) 1H- and 13C-NMR in CDCl3 (Ref. 1251)
Ramann spectrum in n-hexane (Ref. 1132)

Purple photosynthetic bacteria. (Ref. 1054)

An intermediate in the normal spirilloxanthin pathway of purple photosynthetic bacteria (Ref. 1054).
[Table 1006]

Bond lengths, bond angles and dihedral angles determined by AM1 calculation (Ref. 1251).
135
Monodemetyl spirilloxanthin/ Hydroxyspirilloxanthin/ OH-Spirilloxanthin
1'-Methoxy-3,4,3',4'-tetradehydro-1,2,1',2'-tetrahydro-y,y-caroten-1-ol
VCA1055
Shinichi Takaichi
C41H58O2 582.898 Download ChemDraw structure file

m.p. 214-214.5 C (Ref. 1341)
lmax (nm): acetone 469, 498, 531 (e 128, 184, 161 *103) (Ref. 1341)



Purple photosynthetic bacteria. (Ref. 1054)
An intermediate in the normal spirilloxanthin pathway of purple photosynthetic bacteria (Ref. 1054).
[Table 1007]


136
3,4-Dihydroanhydrorhodovibrin
1-Methoxy-1,2-dihydro-y,y-carotene
VCA1056
Shinichi Takaichi
C41H60O 568.914 Download ChemDraw structure file

lmax (nm): HPLC eluent 447, 474, 505, %III/II=74 (Ref. 1067)
1H-NMR (benzene): 1.06 (16, 17-H3), 1.41 (2-H2), 1.57 (17'-H3), 1.58 (3-H2), 1.68 (16'-H3), 1.75 (18'-H3), 1.76 (18-H3), 1.88 (20, 20'-H3), 1.93 (19'-H3), 1.94 (19-H3), 2.09 (4-H2), 2.19 (3', 4'-H2), 3.04 (1-O-CH3), 6.18 (6'-H), 6.20 (6-H) (Ref. 1067)
FD-MS m/z: 568 (Ref. 1067)


Rhodospirillum rubrum ST4 mutant (purple photosynthetic bacterium) (Ref. 1067)

This carotenoid seems to be by-product in the normal spirilloxanthin pathway of purple photosynthetic bacteria (Ref. 1054).
In Rhodospirillum rubrum ST4 mutant, crtD may be mutated, but 7,8-dihydro-y end group can unusually be the substrate of CrtF (Ref. 1067).
In Rhodospirillum rubrum ST4 mutant, crtD may be mutated, but 7,8-dihydro-y end group can unusually be the substrate of CrtF. (Ref. 1067)

137
3',4'-Dihydrorhodovibrin
1'-Methoxy-1,21',2'-tetrahydro-y,y-caroten-1-ol
VCA1057
Shinichi Takaichi
C41H62O2 586.930 Download ChemDraw structure file

lmax (nm): HPLC eluent 447, 474, 505, %III/II=76
[Spectrum 1136] (Ref. 1067)
1H-NMR (benzene): 0.59 (1-OH), 1.03 (16, 17-H3), 1.06 (16', 17'-H3), 1.32 (2-H2), 1.41 (2'-H2), 1.49 (3-H2), 1.58 (3'-H2), 1.75 (18-H3), 1.76 (18'-H3), 1.88 (20, 20'-H3), 1.95 (19-H3), 1.94 (19'-H3), 2.06 (4-H2), 2.09 (4'-H2), 3.04 (1-O-CH3), 6.18 (6-H), 6.19 (6'-H) (Ref. 1067)
FD-MS m/z: 586 (Ref. 1067)


Rhodospirillum rubrum ST4 mutant (purple photosynthetic bacterium) (Ref. 1067)

In Rhodospirillum rubrum ST4 mutant, crtD may be mutated, but 7,8-dihydro-y end group can unusually be the substrate of CrtF. (Ref. 1067)
In Rhodospirillum rubrum ST4 mutant, crtD may be mutated, but 7,8-dihydro-y end group can unusually be the substrate of CrtF. (Ref. 1067)

138
3,4,3',4'-Tetrahydrospirilloxanthin
1,1'-Dimethoxy-1,2,1',2'-tetrahydro-y,y-carotene
VCA1058
Shinichi Takaichi
C42H64O2 600.956 Download ChemDraw structure file

lmax (nm): HPLC eluent 447, 474, 505, %III/II=75
[Spectrum 1137] (Ref. 1067)
1H-NMR (benzene): 1.06 (16, 17-H3), 1.41 (2-H2), 1.58 (3-H2), 1.76 (18-H3), 1.88 (20-H3), 1.94 (19-H3), 2.09 (4-H2), 3.04 (1-O-CH3), 6.19 (6-H) (Ref. 1067)
FD-MS m/z: 600 (Ref. 1067/1068)(Ref. 0059)


Rhodospirillum rubrum ST4 mutant (Ref. 1067), Rhodospira trueperi, Thioalkalicoccus limnaeus, Thioflavicoccus mobilis, Halorhodospira abdelmalekii, Halorhodospira halochloris (purple photosynthetic bacteria) (Ref. 1054/1068), a major carotenoid of Thiococcus (=Thiocapsa) pfennigii (Ref. 1319).

The final product in the unusual spirilloxanthin pathway of purple photosynthetic bacteria (no activity of CrtD or crtD mutant) (Ref. 1054). In Rhodospirillum rubrum ST4 mutant, crtD may be mutated, but 7,8-dihydro-y end group can unusually be the substrate of CrtF. (Ref. 1067)
In Rhodospirillum rubrum ST4 mutant, crtD mutant may be mutated, but 7,8-dihydro-y end group can unusually be the substrate of CrtF. (Ref. 1067)

139
4,4'-Diapophytofluene
7,8,11,12,7',8'-Hexahydro-4,4'-diapo-y,y-carotene
VCA1059
Shinichi Takaichi
C30H46 406.686 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 255, 333, 349, 368 %III/II=83
[Spectrum 1018] (Ref. 1057/1069); petroleum (316), 330, 347, 366 (Ref. 1364/1368); ethanol (316), 331, 345, 367 (Ref. 1364)

FD-MS m/z: 406 (Ref. 1069); (Ref. 1368)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=7.6 min (Ref. 1057/1069)
Heliobacillus mobilis, Heliophilum fasciatum, Heliobacterium gestii (Heliobacteria) (Ref. 1069)
Staphylococcus aureus Newman (Ref. 1092), Staphylococcus aureus 209P (2% of total) (Ref. 1364), Streptococcus faecium UNH 564P (12% of total) (Ref. 1363)

an Escherichia coli transformant carrying the S. aureus crtM gene (Ref. 1092).
The symmetrical carbon skeleton is reduced from biosynthetic labelling studies in Streptococcus faecium UNH 564P (Ref. 1363/1369).
A 4,4'-diapophytoene (dehydrosqualene) synthase gene (crtM), which mediates synthesis of 4,4'-diapophytoene (dehydrosqualene) from farnesyl diphosphate, has been cloned from Staphylococcus aureus (Ref. 1092).

140
4,4'-Diapo-z-carotene
7,8,7',8'-Tetrahydro-4,4'-diapo-y,y-carotene
VCA1060
Shinichi Takaichi
C30H44 404.670 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 234, 295, 380, 401, 426 %III/II=94
[Spectrum 1019] (Ref. 1057/1069); petroleum (358), 378, 400, 425 (Ref. 1364/1368); ethanol (360), 379, 401, 426 (Ref. 1364)

FD-MS m/z: 404 (Ref. 1069); (Ref. 1368)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=6.5 min (Ref. 1057/1069)
Heliobacillus mobilis, Heliophilum fasciatum, Heliobacterium gestii (Heliobacteria) (Ref. 1069)
Streptococcus faecium UNH 564P (4% of total) (Ref. 1363/1368), Staphylococcus aureus 209P (2% of total) (Ref. 1364).

The symmetrical carbon skeleton is reduced from biosynthetic labelling studies in Streptococcus faecium UNH 564P (Ref. 1363/1369).


141
4,4'-Diapolycopene
4,4'-Diapo-y,y-carotene
VCA1061
Shinichi Takaichi
C30H40 400.639 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 294, 361, 445, 470, 501 %III/II=67
[Spectrum 1020] (Ref. 1057/1069); ethanol 440, 467, 498 (Ref. 1366)

FD-MS m/z: 400 (Ref. 1069); MS (Ref. 1366)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=5.4 min (Ref. 1057/1069)
Heliobacteria: Heliobacillus mobilis, Heliophilum fasciatum, Heliobacteirum modesticaldum, Heliobacterium gestii (Ref. 1069)
Methylobacterium rhodinum (formerly Pseudomonas rhodos) (Ref. 1366)

an Escherichia coli transformant carrying the Staphylococcus aureus crtM and Erwinia uredovora crtE and crtI genes (Ref. 1215)


142
Bacteriorubuxanthin
(3R)-1'-Methoxy-3',4'-didehydro-1',2'-dihydro-b,y-caroten-3-ol
VCA1062
Shinichi Takaichi
C41H58O2 582.898 Download ChemDraw structure file

lmax (nm): methanol 293, 361, 446 (shoulder), 468, 499, %III/II=46.2
[Spectrum 1138] (Ref. 1052/1071)
1H-NMR (CDCl3): 1.07 s (16, 17-H3), 1.16 s (16', 17'-H3), 1.36 d (J=4.8 Hz; 3-OH), 1.48 t (2-Hax), 1.74 s (18-H3), 1.78 m (2-Heq), 1.93 s (18'-H3), 1.97 s (19, 19'-H3), 1.98 s (20, 20'-H3), 2.05 m (4-Hax), 2.34 d (J=7.3 hZ; 2'-H2), 2.39 dd (4-Heq), 3.23 s (1'-O-CH3), 3.99 m (3-Hax) (Ref. 1071)
FD-MS m/z: 582 (Ref. 1071)

Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1071)




143
Bacteriorubixanthinal
(3R)-9'-cis-3-Hydroxy-1'-methoxy-3',4'-didehydro-1',2'-dihydro-b,y-caroten-19'-al
VCA1063
Shinichi Takaichi
C41H56O3 596.882 Download ChemDraw structure file
Bacteriorubixanthinal and zeaxanthin are major carotenoids in the RC-B865 pigment-protein complex of Erythrobacter longus, and have a high efficiency of energy transfer to bactriochlorophyll. Resonance Raman spectra of these two carotenoids show some characteristics of interactions with proteins or bacteriochlorophyll. (Ref. 1074)
lmax (nm): methanol 280, 306, 361, 510
[Spectrum 1139] (Ref. 1071)
1H-NMR (CDCl3): 1.07 s (16, 17-H3), 1.16 s (16', 17'-H3), 1.36 d (J=4.8 Hz; 3-OH), 1.47 t (2-Hax), 1.74 s (18-H3), 1.77 m (2-Heq), 1.98 s (19, 20-H3), 2.01 s (18'-H3), 2.03 s (20'-H3), 2.05 m (4-Hax), 2.34 d (J=7.6 hZ; 2'-H2), 2.38 m (4-Heq), 3.24 s (1'-O-CH3), 3.98 m (3-Hax), 9.54 d (J=1.9 Hz; 19'-H aldehyde) (Ref. 1071)
FD-MS m/z: 596 (Ref. 1053/1071)
CD (Ref. 1071) Resonance Raman spectra, and fluorescence excitaiton specta (Ref. 1074)

Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1071) Porphyrobacter tepidarius (thermophilic aerobic photosynthetic bacterium) (Ref. 1214) Porphyrobacter cryptus, Porphyrobacter neustonensis, Erythrobacter litoralis, Erythromicrobium ramosum based on TLC (aerobic photosynthetic bacterium) (Ref. 1237)




144
Erythroxanthin
(3S,2'R,3'R)-3,2',3'-Trihydroxy-b,b-caroten-4-one
VCA1064
Shinichi Takaichi
C40H54O4 598.854 Download ChemDraw structure file

lmax (nm): methanol 460 (Ref. 1072)
1H-NMR (CDCl3): 0.99 s (16'-H3), 1.12 s (17'-H3), 1.20 s (16-H3), 1.31 s (17-H3), 1.71 s (18'-H3), 1.93 s (18-H3), 1.96 s (19'-H3), 1.97 s (20, 20'-H3), 1.99 s (19-H3), 1.80 t (J=13 Hz; 2-Hax), 2.13 dd (J=10 17 Hz; 4'-Hax), 2.14 dd (J=6, 13 Hz; 2-Heq), 2.47 dd (J=6, 17 Hz; 4'-Heq), 3.31 d (J=10 Hz; 2'-Hax), 3.82 ddd (J=7, 10, 10 Hz; 3'-Hax), 4.31 dd (J=6, 14 Hz; 3-Hax) (Ref. 1072) (Ref. 1343)
FD-MS m/z: 598 (Ref. 1072); EIMS, HR-EIMS (Ref. 1343)
CD in EPA(Ref. 1072/1343)

Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1072) Brevundimonas sp. SD212 (bacterium) (Ref. 1343)




145
Erythroxanthin sulfate
Sodium (3S,2'R,3'R)-2',3'-dihydroxy-4-oxo-b,b-caroten-3-yl sulfate
VCA1065
Shinichi Takaichi
C40H54O7S 678.919 Download ChemDraw structure file
Erythroxanthin sulfate is a dominant carotenoid species in the membranes of Erythrobacter longus, but does not transfer the absorbed light energy to bacteriochlorophyll. Resonance Raman spectra indicate that this carotenoid does not interact with either bacteriochlorophyll or proteins in the membranes. (Ref. 1074)
lmax (nm): methanol/H2O (4:1) 40 mM NH4OH, 469 (Ref. 1072)
Sulfate residue; nKBrmax cm-1: 618 s (S-O str.), 1120 vs (S=O str.), 3400 vs (O-H str.) (Ref. 1072)
1H-NMR (CDCl3/CD3OD 3:1): 0.98 s (16'-H3), 1.11 s (17'-H3), 1.24 s (16-H3), 1.37 s (17-H3), 1.71 s (18'-H3), 1.91 s (18-H3), 1.97 s (19'-H3), 1.98 s (20, 20'-H3), 2.00 s (19-H3), 2.03 t (J=14 Hz; 2-Hax), 2.11 dd (J=10, 17 Hz; 4'-Hax), 2.37 dd (J=5, 13 Hz; 2-Heq), 2.43 dd (J=7, 17 Hz; 4'-Heq), 3.25 d (J=10 Hz; 2'-Hax), 3.78 ddd (J=7, 10, 10 Hz; 3'-Hax), 5.08 dd (J=5, 14 Hz; 3-Hax) (Ref. 1072)
FD-MS m/z: 692 methyl ester (Ref. 1053/1072)
CD (Ref. 1072) Resonance Raman spectra, and fluorescence excitaiton specta (Ref. 1074)

Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1072)



Sulfate is easily removed by the treatment in 0.6 M HCl/THF for 10 min at room temperature. Erythroxanthin sulfate is methylated with diazomethane. (Ref. 1072)
146
Caloxanthin 3-sulfate
Sodium (3R,2'R,3'R)-2',3'-dihydroxy-b,b-caroten-3-yl sulfate
VCA1066
Shinichi Takaichi
C40H56O6S 664.935 Download ChemDraw structure file

lmax (nm): methanol/H2O (4:1) 40 mM NH4OH, 344, 450, 475, %III/II=29 (Ref. 1072)
1H-NMR (CDCl3/CD3OD 3:1): 0.98 s (16-H3), 1.07 s (16', 17'-H3), 1.11 s (17-H3), 1.60 t (J=12 Hz; 2-Hax), 1.71 s (18-H3), 1.72 s (17'-H3), 1.97 s (19, 20, 19', 20'-H3), ca. 2.02 (2'-Heq), 2.11 dd (J=10, 17 Hz; 4-Hax), 2.24 dd (J=10, 16 Hz; 4-Hax), 2.59 dd (J=5, 17 Hz; 4-Heq), 2.44 dd (J=6, 17 Hz; 4-Heq), 3.25 d (J=10 Hz; 2-Hax), 3.78 ddd (J=7, 10, 10 Hz; 3-Hax), 4.70 m (3-Hax) (Ref. 1072)
FD-MS m/z: 678 methyl ester (Ref. 1072)

Erythrobacter longus (aerobic photosynthetic bacterium) (Ref. 1072)




147
3,4-Dihydrospheroidene/ Methoxyneurosporene
1-Methoxy-1,2,7',8'-tetrahydro-y,y-carotene
VCA1067
Shinichi Takaichi
C41H62O 570.930 Download ChemDraw structure file

lmax (nm): methanol 329, 413, 437, 465, %III/II=87.6
[Spectrum 1140] (Ref. 1052)




Rhodobacter, Rhodovulum, Rhodobaca, Rhodoferax, Rubrivivax, Roseobacrer species, and Rhodobacter sphaeroides Ga mutant (purple photosynthetic bacteria) (Ref. 1054)

This carotenoid seems to be by-product in the spheroidene pathway of purple photosynthetic bacteria. Rhodobacter sphaeroides Ga mutant accumulats this carotenoid (Ref. 1054).
The crtD mutant of Rhodobacter sphaeroides cultured under anaerobic conditions accumulats neurosporene, chloroxanthin and methoxyneurosporene (Ref. 1089). Methoxyneurosporene is not the substrate of CrtD of Rhodobacter sphaeoides and Rubrivivax gelatinosus in vitro (Ref. 1118/1192).
[Table 1014]


148
Hydroxyspheroidene/ OH-Spheroidene
1'-Methoxy-3',4'-didehydro-1,2,7,8,1',2'-hexahydro-y,y-caroten-1-ol
VCA1068
Shinichi Takaichi
OH-SE
C41H62O2 586.930 Download ChemDraw structure fileDownload mol format file
Carotenoid compositions in the RC-LH1 and LH2 complexes from the anaerobic and semi-aerobic cultures of the purple photosynthetic bacterium, Rubrivivax gelatinosus (Ref. 1076)
lmax (nm): methanol 344, 426, 451, 482, %III/II=78.2
[Spectrum 1141] (Ref. 1052)




Carotenoid of the spheroidene pathway of the purple photosynthetic bacteria. (Ref. 1054)

One of the final products in the spheroidene pathway of purple photosynthetic bacteria (Ref. 1054).
The crtA mutant of Rhodobacter sphaeroides cultured under anaerobic conditions acculatates spheroidene and OH-spheroidene (Ref. 1089). Spheroidene is changed to OH-shperoidene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).
[Table 1015]


149
Hydroxyspheroidenone/ OH-Spheroidenone
1'-Hydroxy-1-methoxy-3,4-didehydro-1,2,1',2',7',8'-hexahydro-y,y-caroten-2-one
VCA1069
Shinichi Takaichi
OH-SO
C41H60O3 600.913 Download ChemDraw structure file
Carotenoid compositions in the RC-LH1 and LH2 complexes from the anaerobic and semi-aerobic cultures of the purple photosynthetic bacterium, Rubrivivax gelatinosus (Ref. 1076)
lmax (nm): hexane 482, 513; benzene: 499, 531 (shoulder) (Ref. 1073); methanol
[Spectrum 1142]



Silicagel G TLC, benzene-hexane-acetone (5:5:1): Rf=0.27 (Ref. 1073)
Roseobacter denitrificans (=Erythrobacter sp. OCh 114) (aerobic photosynthetic bacterium) (Ref. 1073) Carotenoid of the spheroidene pathway under semi-aerobic culture of the purple photosynthetic bacteria. (Ref. 1054)

One of the final products in the spheroidene pathway of purple photosynthetic bacteria under semi-aerobic conditions (Ref. 1054).
[Table 1016]


150
Demethylspheroidenone
1-Hydroxy-3,4-didehydro-1,2,7',8'-tetrahydro-y,y-caroten-2-one
VCA1070
Shinichi Takaichi
DMSO
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): methanol 299, 374, 485; reduced form 279, 345, 428, 451, 481, %III/II=59
[Spectrum 1143] (Ref. 1100)

FD-MS m/z: 568 (Ref. 1100/1260)


Rhodobaca bogoriensis (Ref. 1100), Rhodovulum sulfidophilum (Ref. 1350) (purple photosynthetic bacterium)

An intermediate in the spheroidene pathway of purple photosynthetic bacteria (Ref. 1054).
The crtF mutant of Rhodobacter capsulatus accumulats DMS and DMSO (Ref. 1102). The crtF mutant of Rubrivivax gelatinosus (photosynthetic bacteria) produces this carotenoid (Ref. 1260).

151
2-Ketospirilloxanthin
1,1'-Dimethoxy-3,4,3',4'-tetradehydro-1,2,1',2'-tetrahydro-y,y-caroten-2-one
VCA1071
Shinichi Takaichi
C42H58O3 610.908 Download ChemDraw structure file
Carotenoid compositions in the RC-LH1 and LH2 complexes from the anaerobic and semi-aerobic cultures of the purple photosynthetic bacterium, Rubrivivax gelatinosus (Ref. 1076)
lmax (nm): methanol 287, 334, 408, 507, 527 (shoulder), reduced form 368, 384, 463, 491, 524, %III/II=61 (Ref. 1076)

FD-MS m/z: 610 (Ref. 1076)


Rubrivivax gelatinosus (purple photosynthetic bacterium) (Ref. 1076)



152
2,2'-Diketospirilloxanthin/ Diketospirilloxanthin
1,1'-Dimethoxy-3,4,3',4'-tetradehydro-1,2,1',2'-tetrahydro-y,y-carotene-2,2'-dione
VCA1072
Shinichi Takaichi
C42H56O4 624.892 Download ChemDraw structure file
Carotenoid compositions in the RC-LH1 and LH2 complexes from the anaerobic and semi-aerobic cultures of the purple photosynthetic bacterium, Rubrivivax gelatinosus (Ref. 1076)
lmax (nm): hexane 487, 518, 555; benzene 540, 578 (Ref. 1073); methanol 304, 352, 431 (shoulder), 522, 548 (shoulder), reduced form 369, 384, 464, 491, 524, %III/II=58 (Ref. 1076)

FD-MS m/z: 624 (Ref. 1076) (Ref. 0059)

Silicagel G TLC, benzene-hexane-acetone (5:5:1): Rf=0.51 (Ref. 1073)
Roseobacter denitrificans (=Erythrobacter sp. OCh 114) (aerobic photosynthetic bacterium) (Ref. 1073) Rubrivivax gelatinosus (purple photosynthetic bacterium) (Ref. 1076)

In Rhodobacter sphaeroides, replacing the native 3-step CrtI with the 4-step enzyme from Erwinia herbicola results in significant flux down the spirilloxanthin pathway, and diketospirilloxanthin is the major carotenoid (Ref. 1194).
[Table 1010] (Ref. 1076)


153
3,4-Dihydrospheroidenone
1-Methoxy-1,2,7',8'-tetrahydro-y,y-caroten-2-one
VCA1073
Shinichi Takaichi
C41H60O2 584.914 Download ChemDraw structure file

lmax (nm): methanol 328, 414, 436, 465, %III/II=89.1
[Spectrum 1144]; reduced form 329, 414, 436, 465, %III/II=82.9 (Ref. 1052/1075)
1H-NMR (CDCl3): 1.28 s (16, 17-H3), 1.59 s (16'-H3), 1.60 s (18'-H3), 1.67 s (17'-H3), 1.82 s (18, 19'-H3), 1.95 s (20'-H3), 1.96 s (19-H3), 1.97 s (20-H3), 2.04 (3'-H2), ca. 2.1 (4', 8'-H2), 2.12 (7'-H2), 2.34 m (4--H2), 2.75 t (J=8 Hz; 3--H2), 3.21 s (1-O-CH3), 5.08 t (J=7 Hz; 2'-H), 5.11 t (J=7 Hz; 6'-H), 5.95 d (J=11 Hz; 10'-H), 5.96 d (J=10 Hz; 6-H) (Ref. 1075)
FD-MS m/z: 584 (Ref. 1075)


Roseobacter denitrificans (=Erythrobacter sp. OCh 114) (aerobic photosynthetic bacterium) (Ref. 1075)

When the aerobic photosynthetic bacteirum, Roseobacter denitrificans (=Erythrobacter sp. OCh 114), is cultured in the dark, then subjected to illumination under anaerobic conditions, many unknown yellow pigments appeared and a considerable amount of spheroidenone disappeared. One of the yellow carotenoid is 3,4-dihydrospheroidenone. Presumably, over-reduction of the photosynthetic apparatus interfered with normal photosynthetic electron transfer and resulted in photoreduction of C=C double bond at the 3,4-position of spheroidenone. (Ref. 1075)


154
Loroxanthin/ 19-Hydroxylutein
(3R,3'R,6'R)-b,e-Carotene-3,19,3'-triol
VCA1074
Shinichi Takaichi
C40H56O3 584.871 Download ChemDraw structure file

lmax (nm): diethyl ether/isopentane/ethanol (5:5:2) 262, 326, 418, 438, 465 (Ref. 1078); acetone 420, 443, 469, %III/II=39 (Ref. 1081); methanol/H2O (9:1) 266, 332, 423 (shoulder), 445, 473, %III/II=50
[Spectrum 1145]
1H-NMR (CDCl3): 0.85 s (17'-H3), 1.00 s (16'-H3), 1.09 s (16, 17-H3), 1.63 s (18'-H3), 1.75 s (18-H3, all-trans), 1.79 s (18-H3, 9-cis), 1.84 dd (J=6, 13 Hz; H-2), 1.91 s (19'-H3), 1.97 s (20, 20'-H3), 2.07 (4-Hax), 2.38 dd (J=6, 16 Hz; 4-Heq), 2.40 d (J=10 Hz; 6'-H), 4.03 m (3-Hax), 4.25 m (3'-H), 4.39 s (19-H2, 9-cis), 4.55 s (19-H2, all-trans), 5.436 dd (J=10, 16 Hz; 7'-H), 5.547 m (4'-H), 6.048 d (J=16 Hz; 8-H), 6.138 d (J=16 Hz; 8'-H), 6.349 d (J=16 Hz; 7-H) (Ref. 1078/1081)

CD (Ref. 1078); CD l nm (de) pentane: 195 (- 5.8), 210 (0), 220 (1.4), 240 (1.3), 265 (1.4) (Ref. 1081)

Chlorella vulgaris (Ref. 1078); Botryococcus braunii (Botryococcaceae, Chlorococcales) (Ref. 1081); Cladophorales (Ulvophyceae, Chlorophyta) (Ref. 1330)

Biosynthesis might be in Cladophorales (Ulvophyceae, Chlorophyta): a-carotene a_right lutein a_right loroxanthin a_right siphonaxanthin. Most species produce loroxanthin and no siphonaxanthin, while some produce siponaxanthin and some produce only lutein without loroxanthin and siphonaxanthin. Relationship between carotenoid types and molecular phylogeny is discussed (Ref. 1330>.

Loroxanthin in Botryococcus braunii were purified after saponification. (Ref. 1081)
155
Loroxanthin ester/ Loroxanthin dodecenoate
(3R,3'R,6'R)-19-(trans-Dodec-2-enoyloxy)-b,e-carotene-3,3'-diol
VCA1075
Shinichi Takaichi
C52H76O4 765.157 Download ChemDraw structure file

lmax (nm): methanol 445, 471, %III/II=42 (Ref. 1080)
1H-NMR (CDCl3): 0.83 s (17'-H3), 0.98 s (16'-H3), 1.03 s (16-H3), 1.04 s (17-H3), 1.35 dd (J=7, 13 Hz; 2'-Hax), ca. 1.41 (3'-OH), 1.45 dd (J=12, 12 Hz; 2-Hax), 1.61 s (18'-H3), 1.71 s (18-H3), 1.84 dd (J=6, 13 Hz; 2'-Heq), 1.89 s (19'-H3), 1.95 s (20, 20'-H3), 2.02 dd (J=10, 17 Hz; 4-Hax), 2.37 dd (J=7, 17 Hz; 4-Heq), 2.39 d (J=8 Hz; 6'-H), 3.98 m (3-Hax), 4.23 m (3'-H), 5.04 s (19-H2), 5.42 dd (J=10, 16 Hz; 7'-H), 5.53 brs (4'-H), 6.04 d (J=16 Hz; 8-H), 6.19 d (J=17 Hz; 7-H), fatty acid moiety 0.86 t (J=7 Hz; terminal CH3), 1.23 (CH2), 1.41 (5-H2), 2.16 dddd (J=1.4, 7.1, 7.2, 7.3 Hz; 4-H2), 5.80 ddd (J=105, 1.7, 15.6 Hz; 1-H), 6.97 ddd (J=6.8, 7.1, 15.6 Hz; 2-H) (Ref. 1080)
FD-MS m/z: 764 (100%), [M-18]+ (2%) (Ref. 1053/1080)

Pyramimonas parkeae NIES 254 (Prasinophyceae) and a chlorarachniophycean alga (Ref. 1080)




156
Siphonaxanthin
(3R,3'R,6'R)-3,19,3'-Trihydroxy-7,8-dihydro-b,e-caroten-8-one
VCA1076
Shinichi Takaichi
Sx
C40H56O6 632.869 Download ChemDraw structure file
Siphonaxanthin in the chloroplasts ofgreen alga Codium fragile exhibits a new absorption band at approximately 535 nm, and this might originat a nwe excited state (Sx) between the S2 and S1 states based on fluorescence anisotrophy decay (Ref. 1286).
lmax (nm): methanol 451, and reduced form 309, 397, 419, 446, %III/II=97.7
[Spectrum 1146] (Ref. 1052/1079); acetone 441, (461) (Ref. 1248)
1H-NMR in CDCl3 (Ref. 1248)
FD-MS m/z: 600 (Ref. 1079) EI-MS (Ref. 1248)

HPLC of Mesostigma viride (Prasinophyceae) (Ref. 1250)
Chlamydomonas parkeae NIES 441 (Ref. 1079), Codium (Ref. 1248), Mesostigma (Prasinophyceae) (Ref. 1250), Cladophorales (Ulvophyceae, Chlorophyta) (Ref. 1330).

Biosynthesis might be in Cladophorales (Ulvophyceae, Chlorophyta): a-carotene a_right lutein a_right loroxanthin a_right siphonaxanthin. Most species produce loroxanthin and no siphonaxanthin, while some produce siponaxanthin and some produce only lutein without loroxanthin and siphonaxanthin. Relationship between carotenoid types and molecular phylogeny is discussed (Ref. 1330>.

Identical with xanthophyll K1S.
Some green alga have siphonaxanthin ester(s), usually 2-trans-dodecenoate (Ref. 1079).
157
Siphonaxanthin ester/ Siphonaxanthin dodecenoate/ (Siphonein)
(3R,3'R,6'R)-19-(trans-Dodec-2-enoyloxy)-3,3'-dihydroxy-7,8-dihydro-b,e-caroten-8-one
VCA1077
Shinichi Takaichi
Sx-FA
C52H76O5 781.157 Download ChemDraw structure file
6'-Hydroxysiphonaxanthin ester and siphonaxanthin ester have function as antenna pigments in Pterosperma (Ref. 1249). Siphonaxanthin ester has function as antenna pigments in Mesostigma (Ref. 1250).
lmax (nm): acetone 448, (463) (Ref. 1248); methanol 455 and its reduced form 402, 425, 452, %III/II=93 (Ref. 1249); methanol
[Spectrum 1147]
1H-NMR in CDCl3 (Ref. 1248) 1H- and 13C-NMR in CDCl3 (Ref. 1249/1250)
FD-MS m/z: 724 for C8:1 (Ref. 1352), 780 for C12:1 (Ref. 1079/1352), 808 for C14:1 (Ref. 1249/1352) 782 for C12:0 and 810 for C14:0 (Ref. 1250); EI-MS (Ref. 1248)
CD in hexane (Ref. 1248)
HPLC of Pterosperma cristatum (Ref. 1249), and Mesostigma viride (Ref. 1250) (Prasinophyceae, Chlorophyta).
Chlamydomonas parkeae NIES 441, Codium divaricatum, Codium latum, Bryopsis maxima, Caulerpa sertularioides and Caulerpa serrulata (green algae) (Ref. 1079) Codium and Pyramimonas (Ref. 1248) Pterosperma, Mesostigma and Nephroslmis (Prasinophyceae) (Ref. 1249/1250/1352)



Identical with xanthophyll K1.
Esterified fatty acids in Chlamydomonas parkeae are 2-trans-dodecenoate, 2-trans-decenoate and 2-trans-octenoate, while other species have only 2-trans-dodecenoate. Since the name ""siphonein"" can not specify the fatty acid moiety, siphonaxanthin ester is proposed (Ref. 1079).
Pyraminonas amylifera has 2-trans-dodecenoate and 2-trans-decenoate as esterified fatty acids (Ref. 1248). Pterosperma cristatum has 2-trans-tetradecenoate as esterified fatty acid (Ref. 1249). Mesostigma viride has saturated fatty acids, dodecanoate and tetradecanoate, as esterified ones (Ref. 1250).
Majors in Nephroselmis astigmatica, N. pyriformis and Nephroselmis sp. MBIC 11158 are siphonaxanthin C14:1 ester, while that in Nephroselmis sp. MBIC 11149 is siphonaxanthin C8:1 ester (Ref. 1352).
The keto group at C-8 of siphonaxanthin is single-bond trans-conformation for the conjugated double bond, and the double bond at C-2'' of fatty acid is trans-conformation determined by NMR (Ref. 1249).
158
4-Ketonostoxanthin 3'-sulfate
Sodium (2R,3R,2'R,3'S)-2,2',3'-Trihydroxy-4-oxo-b,b-caroten-3-ul sulfate
VCA1078
Shinichi Takaichi
C40H54O8SNa 717.908 Download ChemDraw structure file

lmax (nm): CHCl3/methanol (2:1) (e) 478 (87.6) (Ref. 1040)
nKBrmax cm-1: 3424(O-H), 1657 (C=O), 1386, 1253 (S=O), 1048, 965 (Ref. 1040)
1H-NMR (CDCl3/CD3OD 2:1): 0.99 and 1.09 s (16', 17'-H3), 1.20 and 1.23 s (16, 17-H3), 1.66 s (18'-H3), 1.87 s (18-H3), 1.93-1.97 s (19, 20, 19', 20'-H3), 2.28 dd (J=10, 18 Hz; 4'-H), 2.67 dd (J=7, 18 Hz; 4'-H), 3.42 d (J=10 Hz; 2'-H), 3.45 d (J=11.5 Hz; 2-H), 4.12 d (J=11.5 Hz; 3-H), 4.50 dt (J=7, 10 Hz; 3'-H) (Ref. 1040)
FABMS (pos.) m/z: 693 [M+H]+ (Ref. 1040)
CD l nm (de) CHCl3/methanol (2:1): 262 (3.5), 304 (-10.3), 343 (0.1), 388 (-0.6) (Ref. 1040)

Flavobacterium sp. strain PC-6 (Ref. 1040)




159
Deoxyflexixanthin/ 4-Keto-1'-hydroxytorulene/ Keto-myxocoxanthin
1'-Hydroxy-3',4'-didehydro-1',2'-dihydro-b,y-caroten-4-one
VCA1079
Shinichi Takaichi
C40H54O2 566.856 Download ChemDraw structure file

150-160 degC (Ref. 1085); 155-160 degC (Ref. 1355); 135-136 degC (chemical synthesis) (Ref. 1077)
lmax (nm): acetone 480.5, 508; petroleum ether 476.5, 503; methanol 477.5, 500 (shoulder) (Ref. 1085); light petroleum 474, 504; benzene 490, 520; chloroform 490, 519 (Ref. 1087); methanol
[Spectrum 1148] ; petroleum ether or hexane 477, (504) (Ref. 1355); ethanol 480, (504) (Ref. 1359)
nKBrmax cm-1: 1650, 960 (Ref. 1087/1355)
1H-NMR (CDCl3): 1.20 s (16, 17-H3), 1.23 s (16', 17'-H3), 1.87 s (18-H3), 1.95 s (18'-H3), 1.98 s (19, 20, 19', 20'-H3), ca. 2.4 (4, 2'-H2) (Ref. 1087)
FD-MS: 566 (Ref. 1354); HR-MS (Ref. 1355)


Flexibacter sp. (Ref. 1085), Flexibacter strain NIVA BR6-64 (Ref. 1086/1088) (non-gliding bacterium)
Aerobic dark and anaerobic light cultures of Roseiflexus castenholzii (thermophilic filamentous photosynthetic bacterium) (Ref. 1354)
Major carotenoid of a halophilic sperochete (spirochete RS1) (Ref. 1355), and minor one of Stigmatella aurantiaca strain Sg a1 (Myxobacteriles) (Ref. 1359).
Chemical synthesis (Ref. 1087)



160
1',2'-Dihydro-g-carotene
1',2'-Dihydro-b,y-carotene
VCA1080
Shinichi Takaichi
C40H58 538.889 Download ChemDraw structure file

lmax (nm): acetonitrile/methanol/THF (58:35:7) 440 (shoulder), 461, 491, %III/II=38 (Ref. 1057)
1H-NMR (CDCl3) (Ref. 1103)
FD-MS m/z: 538 (Ref. 1103)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=17.8 min (Ref. 1057)
Chlorobium (present name, Chlorobaculum) tepidum strain TNO (green sulfur bacterium) (Ref. 1103)




161
Chlorobactene
f,y-Carotene
VCA1081
Shinichi Takaichi
C40H52 532.841 Download ChemDraw structure file
Chlorobactene is mainly distributed in chlorosomes, and 2 moles/ P840 is found in FMO-RC from Chlorobium tepidum strain TLS (Ref. 1104).
The ratio chlorobactene to 1',2'-dihydrochlorobactene decreased from 5 to 0.7 in the light-limited cultures of Chlorobium tepidum cells (Ref. 1171).
lmax (nm): acetonitrile/methanol/THF (58:35:7) 287, 354, 440 (shoulder), 461, 490, %III/II=38.3
[Spectrum 1021] (Ref. 1057/1103); methanol
[Spectrum 1149]
1H-NMR (CDCl3) (Ref. 1103)
FD-MS m/z: 532 (Ref. 1103) (Ref. 0059)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=9.8 min (Ref. 1057)
Chlorobium (present name, Chlorobaculum) tepidum (green sulfur bacterium) (Ref. 1103)


Chlorobactene is produced by CrtU, g-carotene desaturase, from g-carotene in Chlorobium tepidum (green sulfur bcterium) (Ref. 1295).

162
1',2'-Dihydrochlorobactene
1',2'-Dihydro-f,y-carotene
VCA1082
Shinichi Takaichi
C40H54 534.857 Download ChemDraw structure file
Dihydrochlorobactene is mainly distributed in chlorosomes from Chlorobium tepidum strain TLS (Ref. 1104).
The ratio chlorobactene to 1',2'-dihydrochlorobactene decreased from 5 to 0.7 in the light-limited cultures of Chlorobium tepidum cells (Ref. 1171).
lmax (nm): acetonitrile/methanol/THF (58:35:7) 287, 352, 439 (shoulder), 461, 490, %III/II=47.1
[Spectrum 1022] (Ref. 1057/1103)
1H-NMR (CDCl3) (Ref. 1103)
FD-MS m/z: 534 (Ref. 1103)

HPLC (column; Novapak C18 (Waters) 8 X 100 mm: eluelnt; acetonitrile/methanol/THF 58:35:7: flow 2.0 ml/min) Rt=12.3 min (Ref. 1057)
Chlorobium (present name, Chlorobaculum) tepidum (green sulfur bacterium) (Ref. 1103)




163
Hydroxychlorobactene/ OH-Chlorobactene
1',2'-Dihydro-f,y-caroten-1-ol
VCA1083
Shinichi Takaichi
C40H54O 550.856 Download ChemDraw structure file

lmax (nm): methanol 283, 348, 438 (shoulder), 459, 488, %III/II=52.2 (S. Takaichi) (Ref. 1103)

FD-MS m/z: 550 (Ref. 1103)


Chlorobium (present name, Chlorobaculum) tepidum (green sulfur bacterium) (Ref. 1103)


1'-OH-Chlorobactene is produced by CrtC, carotenoid 1',2'-hydrotase, from chlorobactene in Chlorobium tepidum (green sulfur bcterium) (Ref. 1295).

164
Hydroxychlorobactene glucoside/ OH-Chlorobactene glucoside
1'-b-D-glucopyranosyloxy-1',2'-dihydro-f,y-carotene
VCA1084
Shinichi Takaichi
C46H64O6 712.997 Download ChemDraw structure file





Chlorobium (present name, Chlorobaculum) tepidum strain S.Pte (green sulfur bacterium) (Ref. 1103)




165
Hydroxychlorobactene glucoside ester/ OH-Chlorobactene glucoside ester
1'-[(6-O-Acyl-b-D-glucopyranosyl)oxy]-1',2'-dihydro-f,y-carotene
VCA1085
Shinichi Takaichi
Download ChemDraw structure file
This is mainly distributed in chlorosome-free membranes, and 1.9 moles/ P840 is found in FMO-RC from Chlorobium tepidum strain TLS (Ref. 1104).
lmax (nm): methanol 286, 351, 437 (shoulder), 459, 489, %III/II=49.7 (S. Takaichi) (Ref. 1103)

FD-MS m/z: 898 (laurate) (Ref. 1103)


Chlorobium (present name, Chlorobaculum) tepidum strain TNO and MET (green sulfur bacterium) has only C12:0 ester(Ref. 1103).
Chlorobium phaeobacteroides 1549 (new name, Chlorobaculum limnaeum 1549; green-sulfur bacterium) has trace amount of this carotenoid, and esterified fatty acid is only C12:0 (Ref. 1282).



In Chlorobium tepidum, the esterified fatty acid is only laurate determined by GLC (Ref. 1103).
166
1'-Hydroxy-g-carotene glucoside/ 1'-OH-g-Carotene glucoside/ (Carotenoids B-G)
1'-b-D-glucopyranosyloxy-1',2'-dihydro-b,y-carotene
VCA1086
Shinichi Takaichi
B-G
C46H48O6 696.870 Download ChemDraw structure file

lmax (nm): methanol 437 (shoulder), 458, 486, %III/II=33.0 (Ref. 1105)

FD-MS m/z: 716 (Ref. 1053/1105)


Chloroflexus aurantiacus (Ref. 1105) and Chloroflexus aggregans (S. Takaichi) (Ref. 1106) (green filamentous bacteria)
Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1094/1111)




167
1'-Hydroxy-g-carotene glucoside ester/ 1'-OH-g-Carotene glucoside ester/ (Carotenoid B-G-FA)
1'-[(6-O-Acyl-b-D-glucopyranosyl)oxy]-1',2'-dihydro-b,y-carotene
VCA1087
Shinichi Takaichi
B-G-FA
Download ChemDraw structure file
This is mainly distributed in chlorosome-free membranes, and 2.6 moles/ P840 is found in FMO-RC from Chlorobium tepidum strain TLS (Ref. 1104).
lmax (nm): methanol 282, 351, 438 (shoulder), 459, 489, %III/II=49.4 (S. Takaichi) (Ref. 1103), 437 (shoulder), 458, 487, %III/II=26.3 (Ref. 1105)
1H-NMR (CDCl3) (Ref. 1105)
FD-MS m/z: 894 (laurate) (Ref. 1103)
FD-MS m/z: 954 (C16:0), 952 (C16:1) (Ref. 1105)


Chlorobium (present name, Chlorobaculum) tepidum strain TNO and MET (green sulfur bacterium) has only C12:0 ester(Ref. 1103).
Chlorobium phaeobacteroides 1549 (new name, Chlorobaculum limnaeum 1549; green-sulfur bacterium) has trace amount of this carotenoid, and esterified fatty acid is only C12:0 (Ref. 1282).
Chloroflexus aurantiacus has mainly C16:0 and C16:1 esters(Ref. 1105) and Chloroflexus aggregans has mainly C16:0 and C18:1 esters (S. Takaichi) (Ref. 1106) (green filamentous bacteria).
Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1094/1111)



In Chlorobium tepidum, the esterified fatty acid is only laurate determined by GLC (Ref. 1103).
In Chloroflexus aurantiacua strains J-10-fl and OK-70-fl, the major esterified fatty acid is C16:0 and C16:1 (Ref. 1105), and that is C16:0, C16:1, C18:0 and C18:1 in Chloroflexus aggregans (S. Takaichi) (Ref. 1106).
168
1'-Hydroxy-g-carotene glucoside mycolic acid ester/ 1'-OH-g-Carotene glucoside mycolic acid ester/ (Carotenoid B-G-Myc)
1'-[(6-O-Mycoloyl-b-D-glucopyranosyl)oxy]-1',2'-dihydro-b,y-carotene
VCA1088
Shinichi Takaichi
B-G-Myc
Download ChemDraw structure file

lmax (nm): methanol 442 (shoulder), 461, 490 (Ref. 1110)

FD-MS m/z: 1278, 1306, 1332, 1334, 1360, 1362, 1388 (These are main molecular ion peaks and each corresponds to the different esterified mycolic acids.) (Ref. 1110)


Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1111)




169
4-Keto-g-carotene/ Keto-g-carotene
b,y-Caroten-4-one
VCA1089
Shinichi Takaichi
C40H54O 550.856 Download ChemDraw structure file

lmax (nm): methanol 269, 307, (438), 466, (485)
[Spectrum 1150]; NaBh4 reduced form 285, 348, (436), 458, 488, %III/II=44 (Ref. 1354)

FD-MS: 550 (Ref. 1354)


Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1111), Rhodococcus erythropolis (Ref. 1094)
One of major carotenods in anaerobic light culture of Roseiflexus castenholzii (thermophilic filamentous photosynthetic bacterium) (Ref. 1354)

A mutant of Rhodococcus rhodochrous accumulats g-karotene and 4-keto-g-karotene (Ref. 1111).
b-Carotene ketolasse from g-carotene to 4-keto-g-carotene is functionally identified from Rhodococcus erythropolice, and can produce canthaxanthin (Ref. 1333).

170
1',2'-Dihydro-1'-hydroxy-4-keto-g-carotene/ 1'-OH-4-Keto-g-carotene/ (Carotenoid K)
1'-Hydroxy-1',2'-dihydro-b,y-caroten-4-one
VCA1090
Shinichi Takaichi
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): hexane 463, 488 (shoulder); reduced form 432, 456, 487, %III/II=38.1
[Spectrum 1151] (Ref. 1108)
1H-NMR (CDCl3) (Ref. 1108)
FD-MS m/z: 568 (Ref. 1053/1108)


Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1094/1111)

Influence of growth temperature on carotenoid content and composition in Rhodococcus rhodochrous (Ref. 1109)


171
1'-Hydroxy-4-keto-g-carotene glucoside/ 1'-OH-4-Keto-g-carotene glucoside/ (Carotenoid K-G)
1'-b-D-glucopyranosyloxy-1',2'-dihydro-b,y-caroten-4-one
VCA1091
Shinichi Takaichi
K-G
C46H66O7 731.012 Download ChemDraw structure file

1H-NMR (CDCl3) (Ref. 1108)
FD-MS m/z: 730 (Ref. 1108)


Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1094/1111)

Influence of growth temperature on carotenoid content and composition in Rhodococcus rhodochrous (Ref. 1109)


172
1'-Hydroxy-4-keto-g-carotene glucoside ester/ 1'-OH-4-Keto-g-carotene glucoside ester/ (Carotenoid K-G-FA)
1'-[(6-O-Acyl-b-D-glucopyranosyl)oxy]-1',2'-dihydro-b,y-caroten-4-one
VCA1092
Shinichi Takaichi
K-G-FA
Download ChemDraw structure file

1H-NMR (CDCl3) (Ref. 1108)
FD-MS m/z: 968-1036 (depend on the esterified fatty acid species) (Ref. 1053/1108)


Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1094/1111)

Influence of growth temperature on carotenoid content and composition in Rhodococcus rhodochrous (Ref. 1109)

After saponifying these carotenoids in a methanolic KOH solution, the carotenoid moiety is carotenoid K-G. After acidic methanolysis of these, fatty acid methyl esters are identified by GLC and major ones are C16:0, C17:0, C18:0, C19:0, C18:1, C19:1, C20:1, C21:1 and 10-methyl C19:0 (Ref. 1108).
173
1'-Hydroxy-4-keto-g-carotene glucoside mycolic acid ester/ 1'-OH-4-Keto-g-carotene glucoside mycolic acid ester/ (Carotenoid K-G-Myc)
1'-[(6-O-Mycoloyl-b-D-glucopyranosyl)oxy]-1',2'-dihydro-b,y-caroten-4-one
VCA1093
Shinichi Takaichi
K-G-Myc
Download ChemDraw structure file

lmax (nm): methanol 470, 490 (shoulder); reduced form 440 (shoulder), 460, 490 (Ref. 1110)
1H-NMR and 13H-NMR (CDCl3) (Ref. 1110)
FD-MS m/z: 1292, 1320, 1346, 1348, 1374, 1402 (These are main molecular ion peaks and each corresponds to the different esterified mycolic acids.) (Ref. 1110)


Rhodococcus rhodochrous (Nocardioform actinomycetes) (Ref. 1111)




174
3,4-Dihydrospirilloxanthin
1,1'-Dimethoxy-3,4-didehydro-1,2,1',2'-tetrahydro-y,y-carotene
VCA1094
Shinichi Takaichi
C42H62O2 598.940 Download ChemDraw structure file
The light-harvesting complex of Rhodospirillum rubrum (Ref. 1120)
lmax (nm): n-hexane 372, 382, 454, 482, 515 (Ref. 1120)

EI-MS m/z: 598 [M], [M-30], [M-32], [M-106-30], [M-160-32] (Ref. 1120)


Rhodospirillum rubrum S1 (purple photosynthetic bacterium) (Ref. 1120)

This carotenoid seems to be by-product in the normal spirilloxanthin pathway of purple photosynthetic bacteria (Ref. 1054).


175
1-OH-3',4'-Didehydrolycopene/ 3',4'-Dehydrorhodopin
3',4'-Didehydro-1,2-dihydro-y,y-caroten-1-ol
VCA1095
Shinichi Takaichi
C40H56O 552.872 Download ChemDraw structure file

lmax (nm): methanol 318, 388, 466, 492, 526, %III/II=59 (Ref. 1064)

FD-MS m/z: 552 (Ref. 1064)




Escherichia coli, which carries the crtE, crtB, crtI, crtY and crtZ genes from the epiphytic bacterium Erwinia uredovora and the crtC gene from the purple photosynthetic bacterium Rhodobacter capsulatus, has synthesized this carotenid (Ref. 1064).


176
3,1'-Dihydroxy-g-Carotene/ 3,1'-(OH)2-g-Carotene
(3R)-1',2'-Dihydro-b,y-carotene-3,1'-diol
VCA1096
Shinichi Takaichi
C40H58O2 570.887 Download ChemDraw structure file

lmax (nm): methanol 282, 349, (437), 459, 486, %III/II=54 (Ref. 1064)

FD-MS m/z: 570 (Ref. 1064)




Escherichia coli, which carries the crtE and crtB genes from the epiphytic bacterium Erwinia uredovora, the al-1 gene from Neurospora and the crtC gene from the purple photosynthetic bacterium Rhodobacter capsulatus, has synthesized this carotenid (Ref. 1064).

177
Didemethylspirilloxanthin/ 1,1'-(OH)2-3,4,3',4'-Tetradehydrolycopene
3,4,3',4'-Tetradehydro-1,2,1',2'-tetrahydro-y,y-carotene-1,1'-diol
VCA1097
Shinichi Takaichi
C40H56O2 568.871 Download ChemDraw structure file

m.p. 225 C (Ref. 1341)
lmax (nm): methanol 316, 386, 466, 492, 525, %III/II=59 (Ref. 1064); acetone 469, 497, 531 (e 112, 157, 135 *103) (Ref. 1341); methanol 468, 494, 528 ; ethanol 306, 317, 371, 388, 468, 494, 528 (Ref. 1342)
1H-NMR in CDCl3 and pyridine (Ref. 1342)
FD-MS m/z: 568 (Ref. 1064/1260); EI-MS, CI-MS (Ref. 1342)


Polyangium fumosum (Myxobacteria, bacteria) (Ref. 1342)
Escherichia coli, which carries the crtE, crtB and crtI genes from the epiphytic bacterium Erwinia uredovora, the crtC gene from the purple photosynthetic bacterium Rhodobacter capsulatus and the crtD gene from Rhodobacter sphaeroides, has synthesized this carotenid (Ref. 1064).
The crtA and crtF mutant of Rubrivivax gelatinosus (photosynthetic bacteria) produces this carotenoid (Ref. 1260).
Didemethylspirilloxanthin glucoside and didemethylspirilloxanthin glucoside esters are also present (Ref. 1342).
178
1,1'-Dihydroxy-3,4-didehydrolycopene/ 1,1'-(OH)2-3,4-Didehydrolycopene
3,4-Didehydro-1,2,1',2'-tetrahydro-y,y-carotene-1,1'-diol
VCA1098
Shinichi Takaichi
C40H58O2 570.887 Download ChemDraw structure file

lmax (nm): methanol 305, 373, 456, 481, 513, %III/II=59 (Ref. 1064/1193)

FD-MS m/z: 570 (Ref. 1064/1093)




Escherichia coli, which carries the crtE, crtB and crtI genes from the epiphytic bacterium Erwinia uredovora, the crtC gene from the purple photosynthetic bacterium Rhodobacter capsulatus and the crtD gene from Rhodobacter sphaeroides, has synthesized this carotenid (Ref. 1064). 3,4-Dehydrorhodopin is changed to 1,1'-(OH)2-3,4-didehydrolycopene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).


179
1-OH-3,4,3',4'-Tetradehydrolycopene/ 3,4,3',4'-Tetradehydrorhodopin
3,4,3',4'-Tetradehydro-1,2-dihydro-y,y-caroten-1-ol
VCA1099
Shinichi Takaichi
C40H54O 550.856 Download ChemDraw structure file

lmax (nm:) methanol 466, 500, 535 (Ref. 1193)

FD-MS m/z: 550 (Ref. 1193)




Escherichia coli, which carries the crtE and crtB genes from the epiphytic bacterium Erwinia uredovora, the al-1 gene from Neurospora,the crtC gene from the purple photosynthetic bacterium Rhodobacter capsulatus and the crtD gene from Rubrivivax gelatinosus, has synthesized this carotenid, while CrtD from Rhodobacter sphaeroides has no functions (Ref. 1193).


180
Deinoxanthin
(2R)-2,1'-Dihydroxy-3',4'-didehydro-1',2'-dihydro-b,y-caroten-4-one
VCA1100
Shinichi Takaichi
C40H54O3 582.855 Download ChemDraw structure file
antioxidation (Ref. 1196)
lmax (nm): methanol (451), 479, (506); chloroform (453), 492, (524); CS2 (479), 509, 544; reduced form in ethanol 458, 474, 505 (Ref. 1195); acetone (454), 480, (507) (Ref. 1196)
1H-NMR in CDCl3 (Ref. 1195/1196) 13C-NMR (Ref. 1196)
APCI-MS (Ref. 1195) EI-MS (Ref. 1196)
CD in ether/isopentane/ethanol (5:5:2) (Ref. 1195/1196)

Deinococcus radiodurans (extremely radioresistant archaebacterum) (Ref. 1195/1196)


Lycopene b-cyclase (CrtLm) (Ref. 1278) and b-carotene ketolase (CrtO) (Ref. 1333) are functionally identified, and phytoene synthase (CrtB) and phytoene desaturase (CrtI) are homologically suggested (Ref. 1334) from Deinococcus radiodurans R1 (extremely radioresistant bacterum).

181
Myxol
(3R,2'S)-3',4'-Didehydro-1',2'-dihydro-b,y-carotene-3,1',2'-triol
VCA1101
Shinichi Takaichi
C40H56O3 584.871 Download ChemDraw structure file

lmax (nm): benzene 462, 488, 522 (Ref. 1216)
1H-NMR, 13C-NMR in CDCl3 (Ref. 1216)

CD in EPA(Ref. 1216)

Flavobacterium sp. P99-3 (MBIC 03313) (Ref. 1216)
Agricone of myxol 2'-glycoside (myxoxanthophyll) in cyanobacteria.


On the biosynthesis of myxol in a marin bcterium strain P99-3, lycopene b-monocyclase (CrtYm) produces g-carotene from lycopene (Ref. 1241), and 1-hydroxy monocyclic carotenoid 3,4-dehydrogenase (CrtD) produces 1'-OH-torulene from 1'-OH-g-carotene (Ref. 1293).
A gene cluster for myxol synthesis is sequenced from a marin bcterium strain P99-3, crtB, crtI, crtYm, crtD, crtA, crtZ, orf1 and orf2 (Ref. 1241), and two of them are functionally confirmed, crtYm and crtD. CrtD (Slr1293) is also functionally found from Synechocystis sp. strain PCC 6803 (cyanobacterium) (Ref. 1300).
Since the name myxoxanthophyll can not specify the sugar moiety and the identification of the sugar moiety is unfeasible in many cyanobacteria, the following naming convention is proposed by (Ref. 1222): when the sugar moiety is unknown, the name is myxol 2'-glycoside, when known, as in the case of rhamnose and a-L-fucose, they should be named myxol 2'-rhamnoside and myxol 2'-a-L-fucoside, respectively.
182
Myxol glycoside/ (Myxoxanthophyll)
(3R,2'S)-2'-Glycosyloxy-3',4'-didehydro-1',2'-dihydro-b,y-carotene-3,1'-diol
VCA1102
Shinichi Takaichi
Download ChemDraw structure file

lmax (nm): methanol 294, 365, 448, 473, 503, %III/II=58 (Ref. 1222)
1H-NMR in CDCl3 (Ref. 1220/1221/1228), 1H-NMR, 13C-NMR in CDCl3 (Ref. 1222)
1H-NMR data in CDCl3 of the glycoside moiety of acetylated myxol 2'-glycosides (fucose, rhamnose and chinovose) (Ref. 1346)
CD in EPA(Ref. 1219/1222/1346)

Myxol 2'-glycoside is found only in cyanobacteria, and the determination of the sugar moieties, including the L- or D-type and the a- or b-linkage, has been done only for a few species.
(3R,2'S)-myxol 2'-O-methyl-methylpentoside from Oscillatoria limosa (Ref. 1217/1219)
myxol 2'-a-L-chinovoside and myxol 2'-a-L-fucoside from Oscillatoria limnotica (Ref. 1221)
myxol 2'-a-L-chinovoside from Oscillatoria agardhii (Ref. 1220)
myxol 2'-(3-O-methyl-a-L-fucoside) from Oscillatoria bornetii (Ref. 1220>
(3R,2'S)-myxol 2'-rhamnoside from Phormidium luridum (Ref. 1219)
myxol 2'-rhamnoside from Anacystis nidulans (Ref. 1218) and Arthrospira sp. (Ref. 1228)
(3R,2'S)-myxol 2'-(2,4-di-O-methyl-a-L-fucoside) from Synechocystis sp. PCC 6803 (Ref. 1222)
(3R,2'S)-myxol 2'-a-L-fucoside from Anabaena sp. PCC 7120, Anabaena variabilis IAM M3 and Nostoc punctiforme PCC 73102 (Ref. 1346)



Since the name myxoxanthophyll can not specify the sugar moiety and the identification of the sugar moiety is unfeasible in many cyanobacteria, the following naming convention is proposed by (Ref. 1222): when the sugar moiety is unknown, the name is myxol 2'-glycoside, when known, as in the case of rhamnose and a-L-fucose, they should be named myxol 2'-rhamnoside and myxol 2'-a-L-fucoside, respectively.
Glycoside is determined by GLC (Ref. 1220/1221), and GLC, TLC and paper chromatography (Ref. 1228).
183
Deoxymyxol/ (2'S)-Plectaniaxanthin
(2'S)-3',4'-Didehydro-1',2'-dihydro-b,y-carotene-1',2'-diol
VCA1103
Shinichi Takaichi
C40H56O2 568.871 Download ChemDraw structure file

(2'S)-plectaniaxanthin (Ref. 1224).
1H-NMR, 13C-NMR in CDCl3 of deoxymyxol 2'-dimethyl fucoside (Ref. 1222). 1H-NMR in CDCl3 of (2'S)-plectaniaxanthin (Ref. 1224).
FD-MS (deoxymyxol 2'-dimethyl fucoside) (Ref. 1222)
CD in EPA of deoxymyxol 2'-dimethyl fucoside and phleixanthophyll (Ref. 1222) are the mirror image of that of (2'R)-plectaniaxanthin (Ref. 1219/1225). (2'S)-Plectaniaxanthin (Ref. 1224).

(2'S)-Deoxymyxol 2'-(2,4-di-O-methyl-aL-fucoside) from the wild and the CrtR mutant of Synechocystis sp. PCC 6803 (Ref. 1222)
(2'S)-Plectaniaxanthin = (2'S)-deoxymyxol (Ref. 1224)


Note: Although deoxymyxol from cyanobacteria and aglycon of phleixanthophyll from Mycobacterium phlei have the same structure including stereochemistry, the glycosilated positions are 2'-OH and 1'-OH, respectively. Although deoxymyxol and plectaniaxanthin have the same structure, the stereochemistry of 2'-OH is (2'S) and (2'R), respectively.
CD of (2'S)-deoxymyxol 2'-dimethyl fucoside (Ref. 1222) is the same with that of (2'S)-phleixanthophyll and the mirror image of that of (2'R)-plectaniaxanthin (Ref. 1219/1225).
184
Plectaniaxanthin/ (2'R)-Plectaniaxanthin
(2'R)-3',4'-Didehydro-1',2'-dihydro-b,y-carotene-1',2'-diol
VCA1104
Shinichi Takaichi
C40H56O2 568.871 Download ChemDraw structure file

lmax (nm): hexane 448, 472, 503 (Ref. 1224); ether: 450, 474, 503 (Ref. 1225)
1H-NMR in CDCl3 (Ref. 1224)
CD in EPA of (2'R)-plectaniaxanthin (Ref. 1219/1225) is the mirror image of that of deoxymyxol 2'-dimethyl fucoside (Ref. 1222) and phleixanthophyll. CD of synthetic (2'S)-plectaniaxanthin (Ref. 1224).

(2'R)-Plectaniaxanthin from Plectania coccinea (fungi) (Ref. 1225)
(2'S)-Plectaniaxanthin (Ref. 1224)


Note: Although deoxymyxol and plectaniaxanthin have the same structure, the stereochemistry of 2'-OH is (2'S) and (2'R), respectively.
CD of (2'R)-plectaniaxanthin (Ref. 1225) is the mirror image of that of (2'S)-deoxymyxol 2'-dimethyl fucoside (Ref. 1222) and (2'S)-phleixanthophyll (Ref. 1219).
185
Oscillol
(2R,2'R)-3,4,3',4'-Tetradehydro-1,2,1',2'-tetrahydro-y,y-carotene-1,2,1',2'-tetrol
VCA1105
Shinichi Takaichi
C40H56O4 600.870 Download ChemDraw structure file

mp 225 degC (Ref. 1277)
lmax (nm): methanol 464, 492, 524 (Ref. 1226), 315, 388, 468, 493, 523 (Ref. 1277)
H, C-NMR in CDCl3 (Ref. 1277)
CD in EPA at 180 degC (Ref. 1277)

Agricone of oscillol diglycoside (oscillaxanthin) in cyanobacteria.
(2S,2'S)-oscillol 2,2'-di(a-L-fucoside) from Gloeobacter violaceus (Ref. 1347)
(all-E, 2R,2?R)-oscillol (Ref. 1277)


Since the name oscillaxanthin can not specify the sugar moiety and the identification of the sugar moiety is unfeasible in many cyanobacteria, the following naming convention is proposed by (Ref. 1222): when the sugar moiety is unknown, the name is oscillol diglycoside, when known, as in the case of rhamnose, it should be named oscillol 2,2'-dirhamnoside.
186
Oscillol diglycoside/ Oacillol bisglycoside/ (Oscillaxanthin)
(2R,2'R)-2,2'-Di-(glycosyloxy)-3,4,3',4'-tetradehydro-1,2,1',2'-tetrahydro-y,y-carotene-1,1'-diol
VCA1106
Shinichi Takaichi
Download ChemDraw structure file

lmax (nm): acetone 467, 496, 529 (Ref. 1226)
1H-NMR in CDCl3 (Ref. 1221/1229)
CD in EPA (Ref. 1226)

Oscillol 2,2'-diglycoside is found only in cyanobacteria, and the determination of the sugar moieties, including the L- or D-type and the a- or b-linkage, has been done only for a few species.
oscillol 2,2'-di(O-methyl-methylpentoside) from Oscillatoria limosa (Ref. 1217)
(2R,2'R)-oscillol 2,2'-di(a-L-chinovoside) from Oscillatoria agardhii (Ref. 1220/1226)
oscillol 2,2'-di(3-O-methyl-a-L-fucoside) from Oscillatoria bornetii (Ref. 1220>
oscillol 2,2'-dirhamnoside from Arthrospira sp. (Ref. 1229)
oscillol 2,2'-di(a-L-chinovoside) and oscillol 2,2'-di(a-L-fucoside) from Spirulina platemsis (Ref. 1221)



Since the name oscillaxanthin can not specify the sugar moiety and the identification of the sugar moiety is unfeasible in many cyanobacteria, the following naming convention is proposed by (Ref. 1222): when the sugar moiety is unknown, the name is oscillol 2,2'-diglycoside, when known, as in the case of rhamnose, it should be named oscillol 2,2'-dirhamnoside.
The stereochemistry of 2-OH and 2'-OH in oscillol 2,2'-diglycoside was proposed to be (2R,2'R), while that of 2'-OH in myxol 2'-glycoside is determined to be (2'S) (Ref. 1219/1222). From the carotenogenesis, oscillol and myxol should heve the same stereochemistry, but the experimental evidence does not give a clear conclusion (S. Takaichi).
Glycoside is determined by GLC (Ref. 1221) and paper chromatography (Ref. 1229).
187
4'-Apo-3,4-didehydrolycopene/ (4-Apo-3',4'-didehydrolycopene)
3,4-Didehydro-4'-apo-y,y-carotene
VCA1107
Shinichi Takaichi
C35H46 466.740 Download ChemDraw structure file

lmax (nm): HPLC eluent 465, 490, 527 (Ref. 1215)






an Escherichia coli transformant carrying the Erwinia uredovora crtE and crtI and Staphylococcus aureus crtM-mutant genes (Ref. 1215)


188
4-Hydroxymyxol/ 4-OH-myxol/ (Aphanizophyll)
3',4'-Didehydro-1',2'-dihydro-b,y-carotene-3,4,1',2'-tetrol
VCA1108
Shinichi Takaichi
C40H56O4 600.870 Download ChemDraw structure file

m.p. 172-173 degC (glycoside) (Ref. 1223)
lmax (nm): methanol 444, 475, 507 (Ref. 1223)



Agricone of 4-OH myxol 2'-glycoside (aphanizophyll) in cyanobacteria.
Aphanizomenon flos-aquae, Microcystis aeruginosa, Oscillatoria tenui and Anabaena aerulosa oscillatoriaoides (cyanobacteria) (Ref. 1223)



Since the name aphanizophyll can not specify the sugar moiety and the identification of the sugar moiety is unfeasible in many cyanobacteria, the following naming convention is proposed by (Ref. 1222) and S. Liaaen-Jensen: when the sugar moiety is unknown, the name is 4-hydroxymyxol 2'-glycoside, when known, as in the case of rhamnose, it should be named 4-hydroxymyxol 2'-rhamnoside.
189
4-Ketophleixanthophyll/ 1',2'-Dihydroxy-4-ketotoruelene
(2'S)-1'-b-D-glucopyranosyloxy-2'-hydroxy-3',4'-didehydro-1',2'-dihydro-b,y-caroten-4-one
VCA1109
Shinichi Takaichi
C46H64O8 744.996 Download ChemDraw structure file

4-ketophleixanthophyll pentaacetate (Ref. 1227)
1H-NMR in CDCl3 (Ref. 1227)

CD in EPA (Ref. 1219)

Mycobacterium phlei (Mycobacteriaceae) (Ref. 1219/1227).




190
Salinixanthin/ 1',2'-Dihydroxy-4-ketotorulene 1'-glucoside ester
(2'S)-1'-[6-O-(13-Methyltetradecanoyl)-b-D-glycopyranosyloxy]-2'-hydroxy-3',4'-didehydro-1',2'-dihydro-b,y-caroten-4-one
VCA1110
Shinichi Takaichi
C61H92O9 969.378 Download ChemDraw structure file

lmax (nm): acetone/MeOH (7:3) (453), 482, 508, %III/II=4; benzene (462), 493, 524, %III/II=9 (Ref. 1234)
1H-NMR in CDCl3/CD3OD (1:1) (Ref. 1234)
EI-MS (Ref. 1234)
CD in ethanol of salinixanthin and its tetraacetate (Ref. 1234)

Salinibacter ruber (halophilic eubacterium) (Ref. 1234)




191
Salmoxanthin/ Trollixanthin
(3S,5R,6S,3'S,6'R)-5,6-Epoxy-5,6-dihydro-b,e-carotene-3,3',6'-triol
VCA1111
Shinichi Takaichi
C40H56O4 600.870 Download ChemDraw structure file

lmax (nm): ether 416, 440, 470 (Ref. 1235)
1H-NMR in CDCl3 (Ref. 1235)

CD in EPA (Ref. 1235)

Oncorhynchus keta (salmon, fish) (Ref. 1235)




192
Deepoxysalmoxanthin
(3R,3'S,6'R)-b,e-Carotene-3,3',6'-triol
VCA1112
Shinichi Takaichi
C40H56O3 584.871 Download ChemDraw structure file

lmax (nm): ether (421), 444, 473 (Ref. 1235)
1H-NMR in CDCl3 (Ref. 1235)

CD in EPA (Ref. 1235)

Oncorhynchus keta (salmon, fish) (Ref. 1235)




193
Gobiusxanthin/ 7,8-Didehydrodeepoxysalmoxanthin
(3R,3'S,6'R)-7,8-Didehydro-b,e-carotene-3,3',6'-triol
VCA1113
Shinichi Takaichi
C40H54O3 582.855 Download ChemDraw structure file

lmax (nm): ether 420, 445, 475 (Ref. 1235/1329)

EIMS (Ref. 1329)

Oncorhynchus keta (salmon, fish) (Ref. 1235), Rhinogobius brunneus (freshwater goby, fish) (Ref. 1329).




194
3'-Hydroxy-3-keto-e-carotene/ 3'-OH-3-keto-e-carotene
(6R,3'R,6'R)-3'-Hydroxy-e,e-caroten-3-one
VCA1114
Shinichi Takaichi
C40H54O2 566.856 Download ChemDraw structure file

lmax (nm): ether 417, 439, 468 (Ref. 0428)

MS (Ref. 0428). Negative CI-MS with methane (Ref. 1238).
CD in EPA (Ref. 0428)

e,e-Carotene-3,3'-dione and 3'-hydroxy-e,e-caroten-3-one are main pigments in feathers of Carduelis and Serinus (bird) (Ref. 1238).
Small amounts of both carotenoids are found in hen's egg yolk, while lutein A is major (Ref. 0428). Eggs of Coryphaena hippurus (dolphin-fish) and Prognichthys agoo (flying fish) (Ref. 0408).

This may be produced from lutein in Carduelis and Serinus (bird)(Ref. 1238).
This may be produced from lutein A in hen's egg (Ref. 0428).
[Table 1001]

(6R,3'R,6'R) and (6S,3'R,6'R) forms are found in hen's egg yolk and are the same with the right half structure of lutein A (Ref. 0428).
195
(6R,6'R)-3,3'-Diketo-e-carotene
(6R,6'R)-e,e-Carotene-3,3'-dione
VCA1115
Shinichi Takaichi
C40H52O2 564.840 Download ChemDraw structure file

lmax (nm): ether 418, 440, 469 (Ref. 0428)

MS (Ref. 0428). Negative CI-MS with methane (Ref. 1238).
CD in EPA (Ref. 0428)

e,e-Carotene-3,3'-dione and 3'-hydroxy-e,e-caroten-3-one are main pigments in feathers of Carduelis and Serinus (bird) (Ref. 1238).
Small amounts of both carotenoids are found in hen's egg yolk, while lutein A is major (Ref. 0428). Eggs of Coryphaena hippurus (dolphin-fish) and Prognichthys agoo (flying fish) (Ref. 0408).

This may be produced from lutein via 3'-hydroxy-e,e-caroten-3-one in Carduelis and Serinus (bird) (Ref. 1238).
This may be produced from lutein A and zeaxanthin via 3'-hydroxy-e,e-caroten-3-one and 3-hydroxy-b,e-caroten-3'-one in heb's egg (Ref. 0428).
[Table 1002]

(6S,6'S), (6S,6'R) and (6R,6'R) forms are found in hen's egg yolk (Ref. 0428).
196
3'-Dehydrolutein/ Philosamiaxanthin/ 3-Hydroxy-b,e-caroten-3'-one
(3R,6'R)-3-Hydroxy-b,e-caroten-3'-one
VCA1116
Shinichi Takaichi
C40H54O2 566.856 Download ChemDraw structure file

lmax (nm): ether 420, 444, 472 (Ref. 0428); hexane 267, 334, 421, 445, 472 (Ref. 0127); benzene 456-8, 486-7 (Ref. 1314); pet. ether 420, 444, 472 (Ref. 0408); HPLC eluent (424), 448, 476 (Ref. 1315)
1H-NMR (Ref. 0127>
CD in EPA (Ref. 0127/0428)

Small amounts of both (3R,6'R) and (3R,6'S) forms are found in hen's egg yolk, while lutein A is major (Ref. 0428). Eggs of Coryphaena hippurus (dolphin-fish) and Prognichthys agoo (flying fish) have (3R,6'S) form (Ref. 0408).
Haemolymph of Philosamia cynthia pryeri (silkworm) (Ref. 1314).
Flowers of Caltha palustris (Ref. 0127).
Human and monkey retinas (Ref. 1315).

This may be produced from lutein A and zeaxanthin in hen's egg (Ref. 0428).
[Table 1017]


197
a-Zeacarotene/ 7',8'-Dihydro-d-carotene
(6R)-7',8'-Dihydro-e,y-carotene
VCA1117
Shinichi Takaichi
C40H58 538.889 Download ChemDraw structure file







In E. coli neurosporene background, lycopene e-cyclase from Arabidopsis produces a-zeacarotene (Ref. 1015).


198
Prasinoxanthin
(3S,6R,3'R,6'R)-3,6,3'-Trihydroxy-7,8-dihydro-g,e-caroten-8-one
VCA1118
Shinichi Takaichi
C40H56O4 600.870 Download ChemDraw structure file
A light-harvesting pigment-protein complex (LHC) of Pseudoscourfieldia marina (Micromonadophyceae = Pracinophyceae) contains 5 prasinoxanthin, 2 neoxanthin, 1 unknown carotenoid, 9 Chl b, 6 Chl a, 2 MgDV (mol) (Ref. 1136).
lmax (nm): ether 446 (466) (Ref. 1243); acetone (426), 449, (473); hexane (429), 452, (480) (Ref. 1246); acetone (427), 448, (468); CHCl3: 462 (Ref. 1247)
IR in KBr (Ref. 1243)
1H-NMR in CDCl3 (Ref. 1243/1245) 13C-NMR in CDCl3 (Ref. 1245)
CD in EPA (Ref. 1243) in ethanol (Ref. 0513)

Clone w 48-23 (Prasinophyceae) (Ref. 1243) Clones BT-5, 1326.1 and 266 G (Prasinophyceae) (Ref. 1244) Bathycoccus, Micromonas, Mantoniella, Pseudoscourfieldia and a clone IIA2 (Prasinophyceae) (Ref. 0513/1246/1247) Prasinococcus (Prasinophyceae) (Ref. 1248)



Identical with xanthophyll K.
The hydroxy groups of the g-end group were shown to be cis-configutated (3S,6R) assuming 3S-chirality by 1H- and 13C-NMR (Ref. 1245).
199
Preprasinoxanthin
(3S,5R,6S,3'R,6'R)-5,6-Epoxy-3,3'-dihydroxy-5,6,7,8-tetrahydro-b,e-caroten-8-one
VCA1119
Shinichi Takaichi
C40H56O4 600.870 Download ChemDraw structure file

lmax (nm): acetone 445, 466, %III/II=8; hexane (423), 447, 473, %III/II=29 (Ref. 1246)
1H-NMR in CDCl3 (Ref. 1246)
EI-MS (Ref. 1246)
CD in ethanol (Ref. 1246)

Clone IIA2 (Pracenophyceae) (Ref. 1246) Prasinococcus (Prasinophyceae) (Ref. 1248)




200
Micromonal
(3R,3'R,6'R)-3,3'-Dihydroxy-7',8'-dihydro-b,e-caroten-19'-al
VCA1120
Shinichi Takaichi
C40H56O3 584.871 Download ChemDraw structure file

lmax (nm): acetone (423), 449, (472); diethylether (422), 447, (470); hexane (425), 449, (474); CHCl3 462, (483) (Ref. 1246/1247)
1H-NMR in CDCl3 (Ref. 1246)
CD in ethanol (Ref. 1246)

Bathycoccus, Micromonas, Mantoniella and Pseudoscourfieldia (Prasinophyceae) (Ref. 0513/1246/1247)




201
Uriolide
(3S,5R,6S,3'R,6'R)-5,6-Epoxy-3,3'-dihydroxy-5,6,7',8'-tetrahydro-b,e-caroten-19',11'-olide
VCA1121
Shinichi Takaichi
C40H54O5 614.854 Download ChemDraw structure file

lmax (nm): acetone 448, 472, %III/II=11; methanol 448, 470, %III/II=2; hexane (427), 448, 478, %III/II=38 (Ref. 1244); CHCl3 (433), 462, 483, %III/II=1 (Ref. 1247)
1H-NMR in CDCl3 (Ref. 1244)
Cd in EPA (Ref. 1244)

Clone 266 G (Prasinophyceae) (Ref. 1244) Bathycoccus (Prasinophyceae) (Ref. 1247) Micromonas, Mantoniella and Pseudoscourfieldia (Prasinophyceae) (Ref. 0513) Prasinococcus (Prasinophyceae) (Ref. 1248)




202
6'-Hydroxysiphonaxanthin/ 6'-OH-Siphonaxanthin
(3R,3'R,6'?)-3,19,3',6'-Tetrahydroxy-7,8-dihydro-b,e-caroten-8-one
VCA1122
Shinichi Takaichi
OH-Sx
C40H56O5 616.870 Download ChemDraw structure file

lmax (nm): acetone 442, (463); CHCl3 461 (Ref. 1248)
1H-NMR in CDCl3 (Ref. 1248)
EI-MS (Ref. 1248)


Pyramimonas (Pracenophyceae) (Ref. 1248)



Identical with xanthophyll K2S.
203
6'-Hydroxysiphonaxanthin ester/ 6'-OH-siphonaxanthin/ 6'-Hydroxysiphonaxanthin dodecenoate
(3R,3'R,6'?)-19-(trans-Dodec-2-enoyloxy)-3,3',6'-trihydroxy-7,8-dihydro-b,e-caroten-8-one
VCA1123
Shinichi Takaichi
OH-Sx-FA
C52H76O6 797.156 Download ChemDraw structure file
6'-Hydroxysiphonaxanthin ester and siphonaxanthin ester have function as antenna pigments in Pterosperma (Ref. 1249).
lmax (nm): acetone 449, (466); methanol 452, (465); heptane 452, (478); CHCl3 463 (Ref. 1248); methanol 455 and its reduced form 402, 425, 451, %III/II=93 (Ref. 1249)
1H-NMR in CDCl3 (Ref. 1248) 1H- and 13C-NMR in CDCl3 (Ref. 1249)
EI-MS (Ref. 1248); FD-MS 824 for C14:1 (Ref. 1249)

HPLC of Pterosperma cristatum (Ref. 1249), and Nephroselmis astigmatica, N. phriformis and Nephroselmis sp. MBIC 11158 (Ref. 1352) (Prasinophyceae, Chlorophyta).
Pyramimonas (Ref. 1248), Pterosperma (Ref. 1249), Nephroselmis (Ref. 1352) (Prasinophyceae).



Identical with xanthophyll K2.
Pyraminonas amylifera has 2-trans-dodecenoate and 2-trans-decenoate as esterified fatty acids (Ref. 1248). Pterosperma cristatum has 2-trans-tetradecenoate as esterified fatty acid (Ref. 1249).
Nephroselmis astigmatica, N. phriformis and Nephroselmis sp. MBIC 11158 have OH-Sx-C12:1 and C14:1 esters (Ref. 1352)
204
Neurosporaxanthin
4'-Apo-b,y-caroten-4'-oic acid
VCA1124
Shinichi Takaichi
C35H46O2 498.739 Download ChemDraw structure file

lmax (nm): diethylether 475 (Ref. 1253)
1H- and 13C-NMR in CDCl3 (Ref. 1253)
EI-MS, HR-EI-MS (Ref. 1253) (Ref. 0059)


Neurospora crassa (Ref. 1176), Fusarium fujikuroi (previous name, Gibberella fujikuroi) (Ref. 1175), and Fusarium strain T-1 (Ref. 1253) (fungus).




205
Neurosporaxanthin b-D-glucopyranoside
4'-Apo-b-caroten-4'-oic acid b-D-glucopyranoside
VCA1125
Shinichi Takaichi
C41H56O7 660.879 Download ChemDraw structure file

lmax (nm): diethylether 475 (Ref. 1253)
1H-NMR in CDCl3/CD3OD (4:1) (Ref. 1253)
FAB-MS, HR-FAB-MS (Ref. 1253)


Fusarium strain T-1 (fungus) (Ref. 1253).




206
Bixindial/ Bixin aldehyde
6,6'-Diapocarotene-6,6'-dial
VCA1126
Shinichi Takaichi
C24H28O2 348.478 Download ChemDraw structure file





Seeds of Bixa orellana (plant) (Ref. 1254).


Lycopene is cleavaged to bixindial by lycopene cleavage dioxygenase (BoLCD), and bixindial is oxidized to norbixin by bixin aldehyde dehydrogenase (BoBADH) with NAD in Bixa orellana seeds (plant) (Ref. 1254).
[Table 1035]

207
Norbixin
6,6'-Diapocarotene-6,6'-dioic acid
VCA1127
Shinichi Takaichi
C24H28O4 380.477 Download ChemDraw structure file





Seeds of Bixa orellana (plant) (Ref. 1254).


Bixindial is oxidized to norbixin by bixin aldehyde dehydrogenase (BoBADH) with NAD, and norbixin is methylated to bixin and methyl bixin by norbixin methyltransferase (BonBMT) with S-adenosylmethionine in Bixa orellana seeds (plant) (Ref. 1254).
[Table 1036]

208
Bixin
6-Methyl hydrogen 6,6'-diapocarotene-6,6'-dioate
VCA1128
Shinichi Takaichi
C25H30O4 394.503 Download ChemDraw structure fileDownload mol format file


FD-MS m/z=394 (Ref. 1053)


Seeds of Bixa orellana (plant) (Ref. 1254).


Norbixin is methylated to bixin and methyl bixin by norbixin methyltransferase (BonBMT) with S-adenosylmethionine in Bixa orellana seeds (plant) (Ref. 1254).
[Table 1037]
Bixin, also known as annatto, is a seed-specific pigment widely used in foods and cosmetics since pre-Columbian times. Natural bixin is 9'-cis form.
209
Methyl bixin/ (Bixin dimethyl ester)
Dimethyl 6,6'-diapocarotene-6,6'-dioate
VCA1129
Shinichi Takaichi
C26H32O4 408.530 Download ChemDraw structure fileDownload mol format file


FD-MS m/z=408 (Ref. 1053)


Seeds of Bixa orellana (plant) (Ref. 1254).


Norbixin is methylated to bixin and methyl bixin by norbixin methyltransferase (BonBMT) with S-adenosylmethionine in Bixa orellana seeds (plant) (Ref. 1254).
[Table 1038]

210
Dihydroxyneurosporene/ OH-Chloroxanthin
1,2,7,8,1',2'-Hexahydro-y,y-carotene-1,1'-diol
VCA1130
Shinichi Takaichi
C40H62O2 574.919 Download ChemDraw structure file

lmax (nm): HPLC eluent 415, 440, 470 (Ref. 1255)






Chloroxanthin is changed to dihydroxyneurosporene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).


211
OH-Demethylspheroidene/ Hydroxydemethylspheroidene
3,4-Didehydro-1,2,1',2',7',8'-hexahydro-y,y-carotene-1,1'-diol
VCA1131
Shinichi Takaichi
OH-DMS
C40H60O2 572.903 Download ChemDraw structure file

lmax (nm): HPLC eluent 430, 455, 485 (Ref. 1255)

FD-MS m/z=572 (Ref. 1260)




Demethylspheroidene is changed to OH-demethylshperoidene by CrtC from Rvi. gelatinosus, not by that from Rba. capusulatus (Ref. 1255).
The crtA and crtF mutant of Rubrivivax gelatinosus (photosynthetic bacteria) produces this carotenoid (Ref. 1260).

212
Astaxanthin ester/ Astaxanthin monoester/ Astaxanthin diester
3,3'-Dihydroxy-b,b-carotene-4,4'-dione monoester and diester
VCA1132
Shinichi Takaichi
Download ChemDraw structure file


FD-MS 778 (C12:0), 806 (C14:0), 832 (C16:1), 834 (C16:0), 860 (C18:1); FAB-MS, SI-MS (Ref. 1256)


Euphausia superba (Antarctic krill) (Ref. 1256) Euphausia, Thysanoessa, Calanus, Acanthephyra and Cancer (Crustaceans) (Ref. 1257)



Composition of astaxanthin, its monoester and its diester in krill are 20%, 34% and 46% (Ref. 1256), and 7-8%, 25-27% and 62-64% (Ref. 0422). Those in Euphausia, Thysanoessa, Calanus, Acanthephyra and Cancer (Crustaceans) are also reported (Ref. 1257).
Only five kinds of fatty acids are found in astaxanthin monoester and diester in krill: C12:0 (17%), C14:0 (20%), C16:0 (29%), C16:1 (9%) and C18:1 (25%) in monoester (Ref. 1256).
Almost the same stereochemical composition in astaxanthin, its monoester and its diester in keill are found: 62-71% (3R,3'R)-, 11-14% (3R,3'S; meso)- and 17-26% (3S,3'S)-astaxanthin (Ref. 0422).
213
Phillipsiaxanthin/ 1,1'-(OH)2-2,2'-diketo-3,4,3',4'-tetradehydrolycopene
1,1'-Dihydroxy-3,4,3',4'-tetradehydro-1,2,1',2'-tetrahydro-y,y-carotene-2,2'-dione
VCA1133
Shinichi Takaichi
C40H52O4 596.838 Download ChemDraw structure file


FD-MS m/z=596 (Ref. 1260)





The crtF mutant of Rubrivivax gelatinosus (photosynthetic bacteria) produces this carotenoid (Ref. 1260).

214
Ketotetradehydrolycopene/ 1,1'-(OH)2-2-keto-3,4,3',4'-tetradehydrolycopene
1,1'-Dihydroxy-3,4,3',4'-tetradehydro-1,2,1',2'-tetrahydro-y,y-caroten-2-one
VCA1134