Back to HOME

Vitamin A

(total 100)
Download Data as Excel Download All Images
No Structure COMMON NAME NAME DATA No INFORMANT SYMBOL FORMULA MOL.WT(ave) Download BIOOGICAL ACTIVITY PHYSICAL AND CHEMICAL PROPERTIES SPECTRAL DATA CHROMATOGRAM DATA SOURCE CHEMICAL SYNTHESIS METABOLISM GENETIC INFORMATION NOTE REFERENCES
MELTING POINT BOILING POINT DENSITY REFRACTIVE INDEX OPTICAL ROTATION SOLUBILITY UV SPECTRA IR SPECTRA NMR SPECTRA MASS SPECTRA OTHER SPECTRA
1
all-trans-retinol
((2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraen-1-ol
VVA0001
Hiroyuki Kagechika
ROH
C20H30O 286.452 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 100%.(Ref. 0046) New physiological functions of vitamin A have been identified in addition to its role in vision (Ref. 0005), namely its role in immune defence reducing morbidity of measles, (Ref. 0006) of respiratory and possibly HIV infections (Ref. 0007), in gene regulation (Ref. 0008), in cell differentiation (Ref. 0009) and morphogenesis.(Ref. 0010/0011)
62-64degC(Ref. 0013)
120-125 at 5x10-3mm
n22,D:1.6410
insol in lcohol, methanol, chloroform, ether, fats and oils
lmax=324-325 nm(E1%1cm 1832 in Ethanol, 1830 in Petro. ether, 1835 in Isopropanol ),326.5 nm(E1%1cm 1745 in Cyclohexane)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.03(6H,1-Me),~1.47(2H,J= n.o,2-CH2), ~1.61( 2H,J= n.o,3-CH2),1.72(3H,5-Me),1.85(3H,13-Me),1.97(3H,9-Me),2.02(2H, J= n.o,4-Me),4.29 ( 2H,J=6.8Hz,15-CH2),5.67 (1H,J=6.8 Hz,14-H),6.08(1H,J=11.0Hz, 10-H),6.09(1H,J=~16Hz,8-H ), 6.14(1H,J=~16Hz,7-H),6.27(1H,J=14.8Hz,12-H),6.60(1H, J=11.0,14.8Hz,11-H)(Ref. 0003)
13C-NMR(d,CDCl3,22.63MHz):12.5,12.6,19.4,21.7,29.0,29.0,33.1,34.2,39.8,59.1,124.8,126.5,128.9, 130.2,130.6,135.6,136.2,136.5,137.7,137.9,(Ref. 0004)
m/e : M+286,268,255,241,225,213,199,185,173,159,145,133,119,105,91,81,69,55,41(70ev,270degC)
Fluorescence (in ethanol at 25degC):Ex.347nm, Em. 490nm(Ref. 0023)

Fish liver oils
Animals8Liver,Lung.Kidney)
by b-ionone and propargyl halide(Ref. 0012)
by conversion of retinal(Ref. 0015/0016/0017)
The dietary preformed retinoids are mainly converted to all-trans-retinol by retinyl-ester hyrdolase, and uptaken from intesitine.The absorbed all-trans-retinol is packaged as retinyl esters(palmitate,stearate,linolate) in chylomicrons. Chylomicrons are secreted into the lymphatic system, and the bulk of the chylomicron retinoids are taken up by the liver,where the majority of the body's retinoids are stored mainly in the parenchymal cells and the stellate cells in the form of complex with protein. During hepatic storage and metabolism,Retinyl esters are hydrolyzed to retinol by bile-salt-independent or bile-salt-dependent retinyl ester hydrolase, which in turn is esterified by ARAT or LRAT.Hydrolyzed retinol is released to the bloodstream binding to RBP,controlling the supply of retinol to target tissues.Other tissues except liver can store retinols,part of which is oxidized to retinal or retinoic acid. (Ref. 0001)(Ref. 0002)


2
All-Trans-3,4-Didehydro Retinol
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1,3-dienyl)-nona-2,4,6,8-tetraen-1-ol
VVA0002
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file
40-51% of relative biological activity of all-trans-retinyl acetate as a acetate form. (Ref. 0046)
63-65,17-19degC(Ref. 0013)
nsol in water or glycerol. Sol in abs alcohol, methanol, chloroform, ether, fats and oils
lmax=350,286,276 nm(E1%1cm 1,455, 715, 555 in ethanol)(Ref. 0013)
13C-NMR(d,CDCl3,22.63MHz):12.6,12.6,20.2,26.7,26.7,33.9,39.9,59.2,124.7,124.9,125.4,126.5,129.9,130.6,130.8,135.7,136.4,136.7,137.1,138.5(Ref. 0004)



freshwater fish liver oils




3
9-cis-retinol
(2E,4E,6Z,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraen-1-ol
VVA0003
Hiroyuki Kagechika
C20H30O 286.452 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 22%.(Ref. 0046)
81-82degC(Ref. 0013)
lmax=323,258nm (E:1477,382 respecticely in ethanol)(Ref. 0013)
13C-NMR(d,CDCl3,22.63MHz):12.7,19.4,20.7,21.8,29.0,29.0,33.2,34.3,39.8,124.0,128.6,128.7,129.4,130.0,130.0,134.8,135.7,136.7,137.1,138.2(Ref. 0004)








4
11-cis-retinol
(2E,4Z,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraen-1-ol
VVA0004
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 23%.(Ref. 0046)
lmax=319,233nm (E:1220,370 respecticely in ethanol)(Ref. 0013)

13C-NMR(d,CDCl3,22.63MHz):12.2,17.1,19.4,21.7,29.0,29.0,33.1,34.3,39.7,59.4(OCH2),125.2,126.4,127.1,129.1,130.5,132.6,136.1,137.1,138.0,138.1(Ref. 0004>








5
11-cis-3,4-didehydroretinol
(2E,4Z,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1,3-dienyl)-nona-2,4,6,8-tetraen-1-ol
VVA0005
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 15%.(Ref. 0046)
lmax=344,286,278nm (E:990,566,493 respecticely in ethanol)(Ref. 0013)









6
13-cis-retinol
(2Z,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraen-1-ol
VVA0006
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 70-85%.(Ref. 0046)
58-60degC(Ref. 0013)
lmax=328nm (E:1686 respecticely in ethanol)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.03(6H,1-Mex2),~1.47(2H,J= n.o,2-CH2),~1.61( 2H,J= n.o,3-CH2),1.71(3H,5-Me),~1.95(3H,13-Me),1.96(3H,9-Me),2.03(2H,J= n.o,4-Me),4.30(2H,J=7.0Hz,15-CH2),5.55(1H,J=7.0Hz,14-H),6.10(1H,J=~16Hz,8-H),6.13(1H,10-H),6.17 (1H,J=~16Hz,7-H),~6.60(1H,J=~15.0Hz,12-H),~6.65(1H,J=~15.0Hz,11-H)(Ref. 0003)
13C-NMR(d,CDCl3,22.63MHz CW offset 1H-decoupling):12.7,19.4,20.4,21.6,29.0,29.0,33.1,34.3,39.8,58.4,127.1,127.1,128.6,128.7,129.3,130.2,135.6,136.8,137.6,137.9,(Ref. 0004)








7
Retinol Acetate/All-trans-retinyl Acetate
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-en-1-yl)-2,4,6,8-nonatetraen-1-yl-acetate
VVA0007
Hiroyuki Kagechika
C22H32O2 328.488 Download ChemDraw structure file
Same as all-trans retinol
57-58degC(Ref. 0046)
lmax=325nm (E1%1cm1560 in ethanol, 1590 in hexane)(Ref. 0014)
1H-NMR(d,CDCl3,220MHz):1.03(6H,1-Me),~1.46(2H,J= n.o,2-CH2),~1.61( 2H,J= n.o,3-CH2),1.71(3H,5-Me),1.89(3H,13-Me),1.96(3H,9-Me),2.02(2H,J= n.o,4-Me),2.05 ( 3H,J=7.0Hz,Acetyl),4.72 (2H,J=6.8Hz,15-CH2),5.61 (1H,J=6.8Hz,14-H),6.10 (1H,J=11.0Hz, 10 -H),6.10 (1H,J=~16Hz,8-H),6.19(1H,J=~16Hz,7-H),6.29(1H,J=14.8Hz,12-H),6.60 (1H,J=11.0,14.8 Hz,11-H),(Ref. 0003)
13C-NMR(d,CDCl3,22.63MHz):19.35,21.67,12.73,12.73,20.88(CH3),29.00,29.00,33.10,34.30,39.78,61.27(OCH2)124.60,125.82,127.00,129.26,130.22,135.89,136.46,137.66,137.95,139.02,170.66(CO)(Ref. 0004)
M+:m/e328(100%), Fragment ion: m/e 313(4%),285(2%),268(40%),255(32%),253(5!%),145(83%),132(54%),119(63%),105(69%),95(40%),91(46%),81(51%),43(61%)(Ref. 0024)
Fluorescence(in cyclohexane,25degC):Ex. 345 nm, Em. 495nm (Ref. 0023)
X-Ray Analysis(Ref. 0022)

Animals( mainly Liver, Lung, Kidney)
Fish liver oils

same as all trans retinol:A part of all-trans-retinol is involved in diet, and stored in liver as retinyl acetate.(Ref. 0001)


8
all-trans-retinyl Palmitate
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-en-1-yl)-2,4,6,8-nonateetraen-1-yl-palmitate / (2E,4E,6E,8E)-Hexadecanoic acid 3,7-dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2, 4,6,8,tetraenyl ester
VVA0008
Hiroyuki Kagechika
C36H60O2 524.860 Download ChemDraw structure file
Same as all-trans-retinol
lmax=325nm (E1%1cm 940 in ethanol)(Ref. 0014)


Fluorescence (in ethanol 25degC):Ex.325 nm Em.470 nm

Animals(mainly Liver, Lung and Kidney)
Fish liver oils

All-trans-retinyl palmitate is hydrolyzed and converted to all-trans-retinol by retinyl-ester hydrolase in intestine and pancreas.(Ref. 0001)


9
all-trans-retinyl stearate
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-en-1-yl)-2,4,6,8-nonateetraen-1-yl-stearate/(2E,4E,6E,8E)-Octadecanoic acid3,7-dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2, 4,6,8,tetraenyl ester
VVA0009
Hiroyuki Kagechika
C38H64O2 552.914 Download ChemDraw structure file







All-trans-retinyl stearate is hydrolyzed and converted to all-trans-retinol by retinyl-ester hydrolase in intestine and pancreas, and a part of retinol is stored as all-trans-retinyl acetate.(Ref. 0001)


10
all-trans-retinyl oleate
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-en-1-yl)-2,4,6,8-nonateetraen-1-yl-oleate/(2E,4E,6E,8E)-Octadec-9-enoic acid 3,7-dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2, 4,6,8,tetraenyl ester
VVA0010
Hiroyuki Kagechika
C38H62O2 550.898 Download ChemDraw structure file







All-trans-retinyl oleate is hydrolyzed and converted to all-trans-retinol by retinyl-ester hydrolase in intestine and pancreas, and a part of retinol is stored as all-trans-retinyl oleate.(Ref. 0001)


11
all-trans-retinyl linolate
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-en-1-yl)-2,4,6,8-nonateetraen-1-yl-linolate/(2E,4E,6E,8E)-Octadeca-9,12,15-enoic acid 3,7-dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)- nona-2, 4,6,8,tetraenyl ester
VVA0011
Hiroyuki Kagechika
C38H58O2 546.866 Download ChemDraw structure file







All-trans-retinyl linolate is hydrolyzed and converted to all-trans-retinol by retinyl-ester hydrolase in intestine and pancreas, and a part of retinol is stored as all-trans-retinyl linolate.(Ref. 0001)


12
All-trans-Retinal
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetranal
VVA0012
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 91%.(Ref. 0046)all-trans-retinal directly and markedly inhibits cloned rod CNG channels in excised patches. 11-cis-retinal and all-trans-retinol also inhibited the channels, but at somewhat higher concentrations. Single-channel analysis suggests that all-trans-retinal reduces average open probability of rod CNG channels by inactivating channels for seconds at a time. At physiological cGMP levels, all-trans-retinal inhibited in the nanomolar range. Our results suggest that all-trans-retinal may be a potent regulator of the channel in rods during the response to bright light, when there is a large surge in the concentration of all-trans-retinal.(Ref. 0025/0026/0027/0028/0029/0030/0031)
61-62degC(Ref. 0013)
Sol in ethanol,chloroform,cyclohexane,petr ether,oils .Insol in water
lmax=381 nm (E1%1cm 1,510 in ethanol), 368 nm(E1%1cm 1,690 in n-heptane)(Ref. 0014)
1H-NMR(d,CDCl3,220MHz):1.03(6H,1-Me),~1.46(2H,J= n.o,2-CH2),~1.62( 2H,J= n.o,3-CH2),1.72(3H,5-Me),~2.0(2H,J= n.o,4-Me),2.03(3H,9-Me),2.32(3H,13-Me),5.97( 1H,J=8.3Hz,14-H),6.17(1H,J=16.0Hz,8-H),6.19(1H,J=11.3Hz,10-H),6.35(1H,J=16.0Hz,7-H),7.15(1H,J=11.3,15.0Hz,11-H),6.37 (1 H,J=15.0Hz,12-H),10.09(1H,J=8.3Hz,CHO)(Ref. 0003)
13C-NMR(d,CDCl3,22.63MHz):13.0,13.0,19.3,21.7,29.0,29.0,33.2,34.1,39.6,128.9,129.4,129.6,130.3,132.4,134.5,137.1,137.6,141.1,154.5,190.7(CO)(Ref. 0004)

Fluorescence (in ether:isopentane:ethanol =5:5:2, -196degC):Ex.420nm,Em.500nm
X-Ray Analysis(Ref. 0022)

Retina
by Vitamin A1 (Ref. 0032)



13
All-Trans-3,4-Didehydro Retinal
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1,3-dienyl)-nona-2,4,6,8-tetraenal
VVA0013
Hiroyuki Kagechika
C20H26O 282.420 Download ChemDraw structure file
57% of relative biological activity of all-trans-retinyl acetate.(Ref. 0046)
78-79,66-68degC(Ref. 0013)
lmax=401,314nm (E:1470, 395 respectively in ethanol)(Ref. 0013)
13C-NMR(d,CDCl3,22.63MHz):12.9,13.1,20.3,26.8,26.8,34.0,40.0,125.0,127.7,128.3,129.0,130.0,130.0,132.3,134.8,136.4,138.2,140.9,154.3,190.5(Ref. 0004)



Freshwater fish retina




14
9-cis-retinal
(2E,4E,6Z,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenal
VVA0014
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 19%.(Ref. 0046)
lmax=373nm (E:1270 respecticely in ethanol)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.05(6H,1-Me),1.75(3H,5-Me),2.00(3H,9-Me),2.30 (3H,13-Me),5.94(1H,J=8.2Hz,14-H),6.06(1H,J=11.8Hz,10-H),6.27(1H,J=15.4Hz,12-H),6.31(1H,J=15.9Hz,7-H),6.64(1H,J=15.9Hz,8-H),7.20(1H,J=11.8,15.4Hz,11-H),10.07(1H,J=8.2Hz,CHO)(Ref. 0003)
13C-NMR(d,CDCl3,22.63MHz):13.2,19.3,20.9,21.8,29.0,29.0,33.2,34.1,39.7,127.9,128.9,129.4,130.4,131.1,131.2,133.8,138.1,140.0,154.3,167.8(CO)(Ref. 0004)








15
11-cis-retinal
(2E,4Z,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenal
VVA0015
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 48%.(Ref. 0046)Application(intraperitoneal injection)of 11-cis-retinal to Rpe65 -/- mice increased the rod ERG signal, increased levels of rhodopsin, and decreased opsin phosphorylation. Therefore, exogenous 11-cis-retinal improves photoreceptor function by regenerating rhodopsin and removes constitutive opsin phosphorylation. Our results indicate that opsin, which has not been exposed to 11-cis-retinal, does not generate the activity generally associated with the bleached apoprotein.(Ref. 0033/0034/0035/0036)
63-65degC(Ref. 0013)
lmax=376.5 290 and254 nm (E1%1cm 878,412 and 614 respectively in ethanol)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.02(6H,1-Me),1.71(3H,5-Me),1.99(3H,9-Me),2.36 (3H,13-Me),5.92 (1H,J=13.0Hz,12-H),6.07(1H,J=8.0Hz,14-H),6.14(1H,J=16.0Hz,8-H),6.32(1H,J=16.0Hz,7-H)6.54(1H,J=11.5Hz,10-H),6.69(1H,J=11.5,13.0Hz,11-H),10.10(1H,J=8.0Hz,CHO)(Ref. 0003)

X-Ray Analysis(Ref. 0022)

Retina



16
11-cis-3,4-didehydroretinal
(2E,4Z,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1,3-dienyl)-nona-2,4,6,8-tetraenal
VVA0016
Hiroyuki Kagechika
C20H26O 282.420 Download ChemDraw structure file

lmax=393,321,252nm (E:882,512,452 respecticely in ethanol)(Ref. 0013)









17
13-cis-retinal
(2Z,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1,3-dienyl)-nona-2,4,6,8-tetraenal
VVA0017
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 93%.(Ref. 0046)
lmax=375,257nm (E:1250,336 respecticely in ethanol)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.04(6H,1-Me),~1.47(2H,J= n.o,2-CH2),~1.63(2H,J=n.o,3-CH2),1.73(3H,5-Me),~2.0(2H,J=n.o,4-Me),2.03(3H,9-Me),2.15(3H,13-Me),5.85(1H,J=8.0Hz,14-H),6.18(1H,J=~16.0Hz,8-H),6.24(1H,J=11.0Hz,10-H),6.36(1H,J=~16.0Hz,7-H),7.04(1H,J=11.0,15.0Hz,11-H),7.30 (1H,J=15.0Hz,12-H),10.21(1H,J=8.0Hz,CHO)(Ref. 0003)
13C-NMR(d,CDCl3,22.63MHz):13.0,19.3,21.1,21.7,29.0,29.0,33.2,34.3,39.7,126.5,127.7,129.4,129.6,130.3,133.4,137.0,137.6,141.3,154.2,174.0(CO)(Ref. 0004)








18
Tretinoin/All-Trans Retinoic Acid
((2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0018
Hiroyuki Kagechika
ATRA
C20H28O2 300.435 Download ChemDraw structure file
A pleiotropic biological activities of vitamin A except visual function result from the binding and activating of retinoid nuclear receptors by all-trans-retinoic acid. (Ref. 0067) All-trans-retinoic acid is effective to acute promyelocytic leukemia (APL).(Ref. 0068)Relative physiological activity for All trans-retinyl acetate is 100%.(Ref. 0046)Differentiation-inducing activity,proliferation-inhibitory activity(Ref. 0018)
179-180degC(Ref. 0013)
ether 1.56 acetone 1.09 ethanol 0.33 water 0.01 (W/V%)
lmax=350nm (E1%1cm 1,510 in Ethanol)(Ref. 0013)
1685,1601,1570,1251,1184,962cm-1(Ref. 0018)
1H-NMR(d,CDCl3,220MHz):1.02(6H,1-Me),~1.47(2H,2-CH2),~1.62(2H,3-CH2),1.72(3H,5-Me),2.01(3H,9-Me),~2.02(2H,CH2),2.37(3H,13-Me),5.79(1H,14-H),6.14(1H,J=16.0Hz,8-H),6.15(1H,J=11.5Hz,10-H),6.29(1H,J=16.0Hz,7-H),6.31(1H,J=15.0Hz,12-H), 7.03 (1H,J=11.5,15.0Hz,11-H)(Ref. 0003)
13C-NMR(d,CDCl3,22.63MHz):12.9,13.9,19.5,21.6,29.0,29.0,33.3,34.5,40.0,118.5,128.7,129.8,129.8,131.1,135.5,137.6,138.0,139.3,153.2,168.6(CO)(Ref. 0004)
Fragment(m/e):M +300,285,255,105,91,77,55,41(Ref. 0018)
Fluorescence (in Ethanol 25degC):Ex.334 nm, Em.484 nm
X-ray analysis(Ref. 0018/0022)


by oxidation of retinal (Ref. 0019)
Single-step process for all-trans nad 13-cis isomers (Ref. 0020/0021)
All-trans-retinoic acid is metabolized to 13-cis-RA, 9-cis-RA, retunoyl b-glucuronide, 5,6-epoxyretinoic acid, 4-hydroxyretinoic acid, 4-oxoretinoic acid, and 3,4-didehydroretinoic acid. The 4-oxidization or 4-hydroxylation occurs in liver.(Ref. 0001)
Teratogenecity

19
All-Trans-3,4-Didehydro-Retinoic acid
(2E,4E,6Z,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1,3-dienyl)-nona-2,4,6,8-tetraenoic acid
VVA0019
Hiroyuki Kagechika
C20H26O2 298.419 Download ChemDraw structure file
6.7% of relative biological activity of all-trans-retinyl acetate.(Ref. 0046)All-Trans-3,4-Didehydro-Retinoic acid possesses morphogenetic properties in the chick limb.(Ref. 0001)
183-184degC(Ref. 0013)
lmax=370,305nm (E1%1cm 1395,443 respectively in Ethanol)(Ref. 0013)






All-Trans-3,4-Didehydro-Retinoic acid is one of the metabolites from all-trans- retinoic acid.(Ref. 0001)


20
13-cis-retinoic acid,Isotretinoin
(2Z,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0020
Hiroyuki Kagechika
C20H28O2 300.435 Download ChemDraw structure file
Relative physiological Activity for all-trans-retinyl acetate is 24%.(Ref. 0046)Keratolytic 13-cis-retinoic acid so dramatically reduces sebaceous gland size and sebum excretion (Ref. 0044), presumably due to the inhibition on lipogenesis in human sebaceous gland (Ref. 0045).
174-175degC(Ref. 0013)
lmax=354 nm(E1%1cm 1,325 in ethanol)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.03(6H,1-Me),~1.46(2H,2-CH2),~1.63(2H,3-CH2),1.72(3H,5-Me),2.00(3H,9-Me),~2.0(2H,4-Me),2.10(3H,13-Me),5.69(1H,14-H),6.17(1H,J=16.0Hz,8-H),6.29(1H,J=11.5Hz,10-H),6.29(1H,J=16.0Hz,7-H),7.03 (1H,J=11.5,15.0Hz,11-H),7. 77(1H,J=15.0Hz,12-H),~9.9(1H,COOH)(Ref. 0003)
13C-NMR(d,CDCl3,22.63MHz):12.9,19.4,21.1,21.6,29.0,29.0,33.3,34.4,40.0,115.9,128.9,129.4,130.1,130.3,132.9,137.4,137.9,140.3,153.3,171.4(CO)(Ref. 0004)




Single step process(Ref. 0020/0021)
13-cis retinoic acid is one of metabolites from all-trans-retinoic acid.(Ref. 0001)


21
9-cis-retinoic acid
(2E,4E,6Z,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0021
Hiroyuki Kagechika
C20H28O2 300.435 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is about 10%.(Ref. 0046) Thyroid-stimulating hormone(TSH) of the anterior pituitary gland is regulated by the binding ofthe thyroid hormone-activated thyroid receptor to the TSH gene at the same time as the binding of the 9-cis-retinoic acid-activated retinoid X receptor to the same gene. Both interactions, separately or simultaneously, can suppress and thus regulate the expression fo the TSH gene. 9-cis-retinoic acid suppresses the expression of the TSH gene of the anterior pituitary gland (Ref. 0038/0039/0040/0041). 9-cis-retinoic avid induces and activates acyl-coenzyme A:cholesterol acyltransferase (ACAT) by increase in ACAT-1 messenger ribonucleic acid (mRNA) in undifferentiated human monocytotic THP-1 cells (Ref. 0042). 9-cis-retinoic avid stimulates leptin messenger ribonucleic acid (mRNA) expression and secretion in human syncytiotrophoblast (Ref. 0043).
189-191degC(Ref. 0013)
lmax=345 nm (E1%1cm 1,230 in ethanol)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.04(6H,1-Me),~1.48(2H,2-CH2),~1.64(2H,3- CH2),1.75(3H,5-Me),2.01(3H,9-Me),~2.04(2H,4-CH2),2.37(3H,13-Me),5.82(1H,14-H),6.09(1H,J=11.3Hz,10-H),6.27(1H,J=14.7Hz,12-H),6.31(1H,J=15.7Hz,7-H),6.67(1H,J=15.7Hz,8-H),7.15( 1H,J=11.3,14.7Hz,11-H)(Ref. 0003)
13C-NMR(d,CDCl3+DMSO-d6 1:1,22.63MHz):13.4,18.9,20.5,21.6,28.8,28.8,32.7,33.9,39.3,119.6,128.1,129.0,129.4, 129.6,129.6,134.7,137.3,137.6,151.2,167.8(CO)(Ref. 0004)





9-cis-retinoic acid is one of the metabolites from all-trans-retinoic acid.(Ref. 0001)


22
9,13-di-cis-retinoic acid
(2Z,4E,6Z,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0022
Hiroyuki Kagechika
C20H28O2 300.435 Download ChemDraw structure file
Relative physiological activity for All trans-retinyl acetate is 7%.(Ref. 0046)
135-136degC(Ref. 0013)
lmax=346nm (E:1150 respecticely in ethanol)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.04(6H,1-Me),~1.48(2H,2-CH2),~1.65(2H,3-CH2),1.75(3H,5-Me),2.02(3H,9-Me),~2.05(2H,4-CH2),2.10(3H,13-Me),5.66(1H,14-H),7.68(1H,J=15.0Hz,12-H),6.64(1H,J=15.7Hz,8-H),6.27(1H,J=15.7Hz,7-H),6.18(1H,J=11.5Hz,10-H),7.11(1H,J=11.5,15.0Hz,11-H)(Ref. 0003)








23
11-cis-Retinoic acid
(2E,4Z,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0023
Hiroyuki Kagechika
C20H28O2 300.435 Download ChemDraw structure file

94-96degC(Ref. 0013)
lmax=342,243nm (E:926,426 respecticely in ethanol)(Ref. 0013)
1H-NMR(d,CDCl3,220MHz):1.03(6H,1-Me),~1.45(2H,2-CH2),~1.62(2H,3-CH2),1.72(3H,5-Me),1.98(3H,9-Me),~2.02(2H,CH2),2.36(3H,13-Me),5.90(1H,14-H),5.91(1H,J=~11.5Hz,12-H),6.14(1H,J=16.0Hz,8-H),6.28(1H,J=16.0Hz,7-H),6.52(1H,J=~11.5Hz,10-H),6.60( 1H,J=~11.5,~11.5Hz,11-H)(Ref. 0003)








24
all-trans-4-hydroxyretinoic acid
(2E,4E,6E,8E)-9-(3-Hydroxy-2,6,6-trimethyl-cyclohex-1-enyl)-3,7-dimethyl-nona-2,4,6,8-tetraenoic acid
VVA0024
Hiroyuki Kagechika
C20H28O3 316.435 Download ChemDraw structure file







all-trans-retinoic acid is converted to all-trans-4-hydroxyretinoic acid by the cytochrome P-450 system, for example, P-450 isozyme P4502C8 of human liver microsomes.When all-trans-retinoic acid binds to CRABP, microsomal enzymes of rats testes catalyze the conversion to all-trans-4-hydroxyretinoic acid.(Ref. 0001)


25
all-trans-4-oxoretinoic acid
(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-3-oxo-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0025
Hiroyuki Kagechika
C20H26O3 314.419 Download ChemDraw structure file







All-trans-retinoic acid is converted to all-trans-4-oxoretinoic acid by thecytochrome P-450 system, for example, P-450 isozyme P4502C8 of human liver microsomes.When all-trans-retinoic acid binds to CRABP, microsomal enzymes of rats testes catalyze the conversion to all-trans-4-hydroxyretinoic acid.(Ref. 0001)


26
DACP analog of retinoic acid
(2E,4E,6E,8E)-9-(2-Acetyl-5,5-dimethyl-cyclopent-1-enyl)-3,7-dimethyl-nona-2,4,6,8-tetraenoic acid
VVA0026
Hiroyuki Kagechika
C20H26O3 314.419 Download ChemDraw structure file
This compound binds to cellular retinoic acid-binding protein and inhibit growth of mouse epidermis and organ cultures of hamster trachea.(Ref. 0069/0070)





Oxidative cleavage of ethyl all-trans retinoate by CrO3-H2SO4 at low temperature, then cyclization under acidic condition byHClO4, and hydrolysis furnishes the product.



27
19-Hydroky-all-trans-retinoic acid
(2E,4E,6E,8E)-7-Hydroxymethyl-3-methyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8- tetraenoic acid
VVA0027
Hiroyuki Kagechika
19-Hydroxy-ATRA
C20H28O3 316.435 Download ChemDraw structure file
Differentiation-Inducing activity on human promyelocytic leukemia HL-60 cells, which is in accordance with its binding activity to nuclear reinoic acid receptors (RARs).(Ref. 0047)
151-152degC(Ref. 0047)
1H-NMR(d,CD3OD):1.09(6H,s),1.52-1.55(2H,m),1.66-1.72(2H,m),1.77(3H,s),2.08(2H,t,J=6Hz),2.37(3H,d,J=1.10Hz),4.54(2H,s),5.86(s),6.11(d,J=16.5Hz),6.31(d,J=11.5Hz),6.47(d,J=15Hz),6.57(d,J=16.5Hz),7.24(dd,J=11.5,15Hz)(Ref. 0047)




b-Ionone was oxidized withPb(OAC)4. The resultant acetate was hydrolyzed, and the 10-hydroxy group was protected by tert-butyldimethylsilylation. The obtained silylether ws allowed to react with triethylphosphoacetate, followed by successive reduction with DIBAL and oxidation with active MnO2. The obtained aldehyde was allowed to react with methyl-g-dimethylphosphonosenecioate to give methyl esters of 19-hydroxy-ATRA and of 19-hydroxy-13CRA in the ratio of 1.3 : 1. Separation using silica gel column chromatography, and alkaline hydrolysis followed by recrystallization gave 19-hydroxy-ATRA.(Ref. 0047)



28
19-Hydroxy-13-cis-retinoic acid
(2Z,4E,6E,8E)-7-Hydroxymethyl-3-methyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8- tetraenoic acid
VVA0028
Hiroyuki Kagechika
19-Hydroxy-13CRA
C20H28O3 316.435 Download ChemDraw structure file
Differentiation-Inducing activity on human promyelocytic leukemia HL-60 cells, which is in accordance with its binding activity to nuclear reinoic acid receptors (RARs).(Ref. 0047)
137degC(dec)(Ref. 0047)
1H-NMR(d,CD3OD):1.09(6H,s),1.52-1.55(2H,m),1.66-1.72(2H,m),1.78(3H,s),2.08(2H,t,J=6Hz),2.13(3H,d,J=1.10Hz),4.54(2H,s),5.73(s),6.12(d,J=16Hz),6.33(d,J=11.5Hz),6.57(d,J=16.5Hz),7.22(dd,J=11.5,15Hz),7.83(d,J=15Hz)(Ref. 0047)




b-Ionone was oxidized withPb(OAC)4. The resultant acetate was hydrolyzed, and the 10-hydroxy group was protected by tert-butyldimethylsilylation. The obtained silylether ws allowed to react with triethylphosphoacetate, followed by successive reduction with DIBAL and oxidation with active MnO2. The obtained aldehyde was allowed to react with methyl-g-dimethylphosphonosenecioate to give methyl esters of 19-hydroxy-ATRA and of 19-hydroxy-13CRA in the ratio of 1.3 : 1. Separation using silica gel column chromatography, and alkaline hydrolysis followed by recrystallization gave 19-hydroxy-13CRA.(Ref. 0047)



29
19-Oxo-all-trans-retinoic acid
(2E,4E,6E,8E)-7-Formyl-3-methyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0029
Hiroyuki Kagechika
19-Oxo-ATRA
C20H26O3 314.419 Download ChemDraw structure file
Differentiation-Inducing activity on human promyelocytic leukemia HL-60 cells, which is in accordance with its binding activity to nuclear reinoic acid receptors (RARs).(Ref. 0047)
132degC(dec)(Ref. 0047)
1H-NMR(d,CD3OD):1.09(6H,s),1.53-1.56(2H,m),1.66-1.73(2H,m),1.78(3H,d,J=0.73Hz),2.10(2H,t,J=6Hz),2.39(3H,d,J=1.10Hz),6.03(s),6.25(d,J=16.5Hz),6.78(d,J=15Hz),6.93(d,J=16.5Hz),7.25(d,J=12Hz),7.73(dd,J=12,15Hz),10.44(s)(Ref. 0047)




Swern oxidation of[(COCl2)/DMSO in CH2Cl2,-60degC] of 19-hydroxy-ATRA gave 19-oxo-ATRA after recrystallization from ether.(Ref. 0047)



30
19-Oxo-9-cis-retinoic acid
(2E,4E,6Z,8E)-7-Formyl-3-methyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0030
Hiroyuki Kagechika
19-Oxo-9-CRA
C20H26O3 314.419 Download ChemDraw structure file
Differentiation-Inducing activity on human promyelocytic leukemia HL-60 cells, which is in accordance with its binding activity to nuclear reinoic acid receptors (RARs).(Ref. 0047)
154.5-156degC(Ref. 0047)
1H-NMR(d,CD3OD):1.11(6H,s),1.54-1.57(2H,m),1.68-1.74(2H,m),1.83(3H,d,J=0.73Hz),2.12(2H,t,J=6Hz),2.37(3H,d,J=1.10Hz),6.07(s),6.36(d,J=1.516.5Hz),6.95(d,J=15Hz),7.05(d,J=16.5Hz),7.06(d,J=11.5Hz),7.29(dd,J=12,15Hz),9.61(s)(Ref. 0047)




Swern oxidation of[(COCl2)/DMSO in CH2Cl2,-60degC] of the methyl ester of 19-hydroxy-ATRA followed by alkaline hydrolysis and recrystallization from AcOEt/n-hexane gave 19-oxo-9CRA.Isomerization of the 9-double bond occured under the alkaline hydrolysis reaction conditions.(Ref. 0047)



31
20,14-retro-retinoic acid
(4E,6E,8E)-7-Methyl-3-methylene-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-4,6,8-trienoic acid
VVA0031
Hiroyuki Kagechika
C20H28O2 300.435 Download ChemDraw structure file
1.8% of relative biological activity of all-trans-retinoic acid on differentiation inducing activity on human promyelocytic leukemia cell line HL-60.(Ref. 0048)
60-62degC(Ref. 0048)
1H-NMR(d,CDCl3,220MHz):3.35(1H,14-H),5.15(1H,20-H),5.25(1H,20-H),6.08(1H,10-H),6.09(1H,8-H),6.19(1H,7-H),6.32(1H,12-H),6.65(1H,11-H).(Ref. 0048)
HRMS(C20H28O2)=300.2104(+1.5mmu).(Ref. 0048)



By treatment of all-trans-retinoic acid with mixed solution of n-BuLi and diisopropylaminein n-hexane and THF.(Ref. 0048)



32
14-methyl-20,14-retro-retinoic acid
(4E,6E,8E)-2,7-Dimethyl-3-methylene-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-4,6,8-trienoic acid
VVA0032
Hiroyuki Kagechika
C21H30O2 314.462 Download ChemDraw structure file
1.8% of relative biological activity of all-trans-retinoic acid on differentiation inducing activity on human promyelocytic leukemia cell line HL-60.(Ref. 0048)
1H-NMR(d,CDCl3,220MHz):3.56(1H,14-H),5.17(1H,20-H),5.24(1H,20-H),6.07(1H,10-H),6.09(1H,8-H),6.19(1H,7-H),6.27(1H,12-H),6.76(1H,11-H).(Ref. 0048)
HRMS(C21H30O2)=314.2247(+0.1mmu).(Ref. 0048)



By treatment of all-trans-retinoic acid with mixed solution of n-BuLi and diisopropylamine and HMPA in n-hexane and THF,then with methyl iodide.(Ref. 0048)



33
14-methyl-all-trans-retinoic acid
(2E,4E,6E,8E)-2,3,7-Trimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraenoic acid
VVA0033
Hiroyuki Kagechika
C21H30O2 314.462 Download ChemDraw structure file
1.8% of relative biological activity of all-trans-retinoic acid on differentiation inducing activity on human promyelocytic leukemia cell line HL-60.(Ref. 0048)
130-131degC(Ref. 0048)
1H-NMR(d,CDCl3,220MHz):5.24(1H,20-H),5.30(1H,20-H),6.15(1H,8-H),6.23(1H,10-H),6.27(1H,7-H),6.70(1H,12-H),6.98(1H,11-H).(Ref. 0048)
HRMS(C21H30O2)=314.2241(-0.5mmu).(Ref. 0048)



By the treatment of 14-methyl-20,14-retro-retinoic acid with t-BuOK/t-BuOH.(Ref. 0048)



34
11-cis retro-g-retinal
(2E,4Z,6E,9Z)-9-(2,2-Dimethyl-6-methylene-cyclohexylidene)-3,7-dimethyl-nona-2,4,6-trienal
VVA0034
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file

lmax=343nm(in Ethanol),(Ref. 0049)
1H-NMR(d,CDCl3,90MHz):1.04(6H,s,gem.CH3),1.84(3H,s,C-9-CH3),2.38(3H,s,C-13-CH3),2.99(2H,d,J=8Hz,C-8-CH3),4.62(1H,d,J=3Hz,exoCH2),5.01(1H,m,exoCH2),5.26(1H,t,J=8Hz,C-8-H2),5.89(1H,d,J=10Hz,C-10-H),6.09(1H,d,J=8Hz),6.41(1H,d,J=12Hz,C-12-H),6.63(1H,dd,J=10,12Hz,C-11-H),10.12(1H,d,J=8Hz,C-15-H)(Ref. 0049)
m/e=284.214(M+,C20H28O requires284.214)(Ref. 0049)



by treatment of retro-g-retinoate with sodium bis-(2-methoxyethoxy)-aluminum hydride in abs. ether, then with active manganese dioxide.(Ref. 0049)



35
9-cis retro-g-retinal
(2E,4E,6Z,9Z)-9-(2,2-Dimethyl-6-methylene-cyclohexylidene)-3,7-dimethyl-nona-2,4,6-trienal
VVA0035
Hiroyuki Kagechika
C20H28O 284.436 Download ChemDraw structure file

lmax=343nm(in Ethanol)(Ref. 0049)
1H-NMR(d,CDCl3,90MHz):1.02(6H,s,gem.CH3),1.84(3H,s,C-9-CH3),2.20(2H,t,J=6Hz,C-4-H2),2.30(3H,s,J=6Hz,C-13-CH3),3.14(2H,d,J=7Hz,C-8-H2),4.64(1H,d,J=3Hz,exoCH2),5.09(1H,m,exoCH2),5.17(1H,t,J=7Hz,C-7-H),5.97(1H,d,J=8Hz,C-14-H),5.99(1H,d,J=11Hz,C-10-H),6.25(1H,d,J=15Hz,C-12-H),6.94(1H,dd,J-11,15Hz,C-11-H),10.13(1H,d,J=8Hz,C-15-H)(Ref. 0049)
m/e=284.215(M+,C20H28O requires284.214)(Ref. 0049)



by treatment of 9-cis retro-g-retinoate with sodium bis-(2-methoxyethoxy)-aluminum hydride in abs. ether, then with active manganese dioxide.(Ref. 0049)



36
8-18 bonded retinal
(2E,4E,6Z)-7-(4,4-Dimethyl-4,5,6,7-tetrahydro-1H-inden-2-yl)-3-methyl-octa-2,4,6-trienal
VVA0036
Hiroyuki Kagechika
C20H26O2 298.419 Download ChemDraw structure file

1H-NMR(d,CDCl3,200MHz):2.07(3H,s,9-Me),2.30(3H,s,13-Me),3.17(2H,sharp s,18-H2),6.32(1H,d,J=16Hz,12-H),6.06(1H,d,J=12Hz,10-H),6.63(1H,s,7-H),7.36(1H,dd,,J=16,12Hz,11-H),10.10(1H,d,J=8.5Hz,CHO)(Ref. 0050)




By irradiation of (2E,4E,6E)-7-(4,4-Dimethyl-4,5,6,7-tetrahydro-1H-inden-2-yl)-3-methyl-octa-2,4,6-trienal using high pressure(30W) Hg lamp with a Pyrex filter in MeOH.(Ref. 0050)



37
(2E,4E,6Z)-7-(7,7-Dimethyl-4,5,6,7-tetrahydro-1H-inden-2-yl)-3-methyl-octa-2,4,6-trienal
VVA0037
Hiroyuki Kagechika
C20H26O2 298.419 Download ChemDraw structure file
binding capacity with cattle opsin(2% digitonin,10mmol HEPES buffer(pH 7.0), 25degC, in the dark, 48h)(Ref. 0050)
1H-NMR(d,CDCl3,200MHz):2.06(3H,s,9-Me),2.32(3H,s,13-Me),3.20(2H,brs,18-H2),6.32(1H,d,J=16Hz,12-H),6.07(1H,d,J=12Hz,10-H),6.45(1H,s,7-H),7.37(1H,dd,J=16,12Hz 11-H),10.10(1H,d,J=8Hz,CHO)(Ref. 0050)




By irradiation of (2E,4E,6E)-7-(7,7-Dimethyl-4,5,6,7-tetrahydro-1H-inden-2-yl)-3-methyl-octa-2,4,6-trienal using high pressure(30W) Hg lamp with a Pyrex filter in MeOH.(Ref. 0050)



38
6-s-cis-locked retinal
(2E,4Z,6E)-7-(1,1-Dimethyl-4,5,6,7-tetrahydro-1H-inden-2-yl)-3-methyl-octa-2,4,6-trienal
VVA0038
Hiroyuki Kagechika
C20H26O 282.420 Download ChemDraw structure file
binding capacity with cattle opsin(2% digitonin,10mmol HEPES buffer(pH 6.86))(Ref. 0051)
lmax(Ethanol)=370nm(e 13100),335nm(e 14800)(Ref. 0051)
1H-NMR(d,CDCl3):1.07(6H,s,gem-Me2),2.07(3H,s,9-Me),2.20(3H,s,13-Me),5.99(1H,s,7-H),6.20(1H,d,J=11Hz,10-H),6.26(1H,d,J=15.5Hz,12-H),6.92(1H,dd,J=15.5Hz,11HZ,11-H),10.05(1H,d,J=8Hz,15-H)(Ref. 0051)
13C-NMR(CDCl3):22.4(19-C),13.4(20-C)(Ref. 0051)




By irradiation of By irradiation of (2E,4E,6E)-7-(4,4-Dimethyl-4,5,6,7-tetrahydro-1H-inden-2-yl)-3-methyl-octa-2,4,6-trienal using high pressure(300W) Hg lamp with a Pyrex filter in MeOH.(Ref. 0051)



39
11-cis- and 12s-trans-fixed retinal
(7Z,9Z,14Z)-{4-[1-Methyl-3-(2,6,6-trimethyl-cyclohex-1-enyl)-allylidene]-cyclopent-2-enylidene}-acetaldehyde
VVA0039
Hiroyuki Kagechika
C20H26O 282.420 Download ChemDraw structure file

lmax(Ethanol)=263nm(e 13300),405nm(e 18500)(Ref. 0052)
1H-NMR(d,CDCl3,200MHz):1.05(6H,s,1-Me2),1.76(3H,s,5-Me),2.05(3H,s,9-Me),3.73(1H,d,J=1.5Hz,20-H),5.97(td,J=1.5HZ,7HZ,14-H),6.32(1H,d,J=16Hz,7-H),6.42(1H,d,J=16Hz,8-H),6.61(1H,d,J=5Hz,12-H),7.27((1H,d,J=5Hz,11-H),9.88(1H,d,J=7Hz,CHO)(Ref. 0052)
M+=282.197 (C20H26O requires M+=282.198)(Ref. 0052)



by treatment of trans-b-ionylidenecyclopent-2-2-en-1-one with mixture of butyl-lithium and cyanomethylphosphonate, then purified. Subsequently treatment with DIBAH.(Ref. 0052)



40
11Z-6s-cis-fixed bicyclic retinal
(2E,4Z,6E)-7-(4,4-Dimethyl-4,5,6,7-tetrahydro-1H-inden-2-yl)-3-methyl-octa-2,4,6-trienal
VVA0040
Hiroyuki Kagechika
C20H26O 282.420 Download ChemDraw structure file
binding capacity with bovine opsin(Ref. 0054)
lmax(Ethanol)=422nm,299nm,229nm lmax(hexane)=407nm(e 14000),295nm(e 8000),229nm(e 9000)(Ref. 0053)
nmax(KBr) /cm-1 1660(C=O), 1581(C=C) (Ref. 0053)
1H-NMR(d,C6D6,200MHz):1.11(6H,s,gem-Me),1.85(6H,s,9- and 13-Me),2.84(2H,s,18H2),5.61(1H,d,J=12Hz,12-H),6.22(1H,d,J=8Hz,14-H),6.47(1H,t-like,J=12Hz,11-H),6.60(1H,s,7-H),6.77(1H,d,J=12Hz,10-H),10.07(1H,d,J=8Hz,CHO)(Ref. 0053)
M+ 282.199(C20H26O requires M 282.198)(Ref. 0053)



by photoisomerization(irradiation with a daylight fluorescent lamp) of corresponding All-trans-bicyclic retinal(Ref. 0040)



41
11Z-6s-trans-fixed bicyclic retinal
(2E,4Z,6E)-7-(4,7a-Dimethyl-5,6,7,7a-tetrahydro-1H-inden-2-yl)-3-methyl-octa-2,4,6-trienal
VVA0041
Hiroyuki Kagechika
C20H26O 282.420 Download ChemDraw structure file
binding capacity with bovine opsin(Ref. 0054)
lmax(Ethanol)=405nm,310nm,258nm,227nm(sh) lmax(Methanol)=405nm(Ref. 0053)
nmax(KBr) /cm-1 1664,1660(C=O), 1593(C=C) (Ref. 0053)
1H-NMR(d,CDCl3,200MHz):1.05(3H,s,1-Me),1.74(3H,s,5-Me),2.06(3H,s,9-Me),2.39(3H,s,13-Me),5.95(1H,d,J=10Hz,12-H),6.08(1H,d,J=8Hz,14-H),6.55(1H,s,7-H),6.61(1H,d,J=10Hz,10-H),6.70(1H,t-like,J=10Hz,11-H),10.10(1H,d,J=8Hz,CHO)(Ref. 0053)
M+ 282.197(C20H26O requires M 282.198)(Ref. 0053)



by photoisomerization(irradiation with a daylight fluorescent lamp) of corresponding All-trans-bicyclic retinal(Ref. 0041>



42
(11Z)-8,18-ethanoretinal
(2E,4Z,6E)-7-(4,4-Dimethyl-2,3,4,7,8,9-hexahydro-1H-benzocyclohepten-6-yl)-3-methyl-octa-2,4,6-trienal
VVA0042
Hiroyuki Kagechika
C22H30O 310.473 Download ChemDraw structure file
binding capacity with bovine opsin(Ref. 0055)
lmax/nm(e/dm3mol-1cm-1) 386(17935),296(10368),266(10942),230(9860)(Ref. 0055)
nmax(KBr) /cm-1 1660, 1575(Ref. 0055)
1H-NMR(d,C6D6,500MHz):1.07(6H,s,1,1-gem-Me),1.42-1.47(2H,m,2-H2),1.55-1.62(2H,m,3-H2),1.80(3H,d,J=1Hz,13-Me),1.86(3H,br,s,9-Me),1.88(2H,t,J=7.5,18-H2),2.05(2H,quintet-like,J=7Hz,18a-H2),2.09(2H,t,J=6.5Hz,4-H2),2.29(2H,t,J=7Hz,18b-H2),5.63(1H,br d,J==12Hz,12-H),6.16(1H,br d,J=8Hz,14-H),6.45(1H,br s,7-H), 6.47 (1H, t-like,J=12Hz,11-H),6.90(1H,br d,J=12,10-H),9.95(1H,d,J=8Hz,CHO)(Ref. 0055)
13C-NMR(d,C6D6,500MHz):14.17(Me),17.51(Me),19.99(CH2),28.15(CH2),29.02(1,1-gem-Me),32.39(CH2),33.04(CH2),34.24(C),36.24(C),39.28(CH2),122.34(CH),128.23(CH),130.65(CH),130.88(CH),131.78(CH),137.28(C),139.77(C),142.42(C),145.19(C),154.08(C),189.76(C)(Ref. 0055)
HRMS:m/z 310.2297(Calc.for C22H30O:M+,310.2296)(Ref. 0055)



synthethizedby 6-step reactions from3-(4,4-Dimethyl-2,3,4,7,8,9-hexahydro-1H-benzocyclohepten-6-yl)-but-2-enoic acid ethyl ester.(Ref. 0042)



43
(11Z)-8,18-methano-retinal
(2E,4Z,6E)-7-(8,8-Dimethyl-3,4,5,6,7,8-hexahydro-naphthalen-2-yl)-3-methyl-octa-2,4,6-trienal
VVA0043
Hiroyuki Kagechika
C21H28O 296.446 Download ChemDraw structure file
binding capacity with bovine rhodopsin.(Ref. 0056)
lmax/nm(MeOH,e/dm3mol-1cm-1) 258.5(13100),374(17600)(Ref. 0056)
nmax(KBr) /cm-1 1660, 1575(Ref. 0056)
1H-NMR(d,CD3OD):0.86(3H,s,Me),1.14(3H,s,Me),1.06-1.20(2H,m,[CH2x1/2]x2),1.48-1.54(2H,m,CH2),1.57-1.63(1H,m,CH2x1/2),1.63-1.72(2H,m,CH2), 1.72-1. 80(1H,m,CH2x1/2),1.86-1.90(2H,m,CH2),1.96-2.01(1H,m,CH2x1/2) ,2.01-2.06 (1H ,m,CH2x1/2),2.05(3H,s,Me),2.39(3H,d,J=1Hz,Me),2.51(1H,dd,J=12.5,8.5Hz,CH2x1/2), 6 .02(1H,br d,J=10Hz,=CH),6.06(1H,br d,J=10Hz,=CH),6.44(1H,br s,=CH),6.83(1H,d,J=11.5Hz ,=CH ),6.86 (1H,dd, J=11.5,10Hz ,=CH),10.05(1H,d,J=8.5Hz,CHO)(Ref. 0056)
13C-NMR(d,CD3OD):14.37(Me),18.30(Me),20.76(CH2),25.28(CH2),26.17(CH2),28.64(Me),29.20(Me),30.76(CH2),31.92(CH2),33.07(C),35.05(CH2),40.23(CH2),123.63(CH),128.24(CH),130.86(CH),131.74(CH),133.08(C),133.47(CH),135.70(C),137.96(C),142.98(C),144.20(C),193.36(CHO)(Ref. 0056)
HRMS:M+ 324.2422 Calc. forC23H32O:M,324.2451(Ref. 0056)



synthethizedby 5-step reactions from8,8-Dimethyl-3,4,5,6,7,8-hexahydro-1H-naphthalen-2-one(Ref. 0056)



44
(11Z)-8,18-propano-retinal
(2E,4Z,6E)-7-(4,4-Dimethyl-1,2,3,4,7,8,9,10-octahydro-benzocycloocten-6-yl)-3-methyl-octa-2,4,6-trienal
VVA0044
Hiroyuki Kagechika
C23H32O 324.500 Download ChemDraw structure file
binding capacity with bovine rhodopsin.(Ref. 0056)
lmax/nm(MeOH,e/dm3mol-1m-1) 408(14700),308(10200), 233(8700)(Ref. 0056)
nmax(KBr) /cm-1 1660, 1580,1550(Ref. 0056)
1H-NMR(d,CD3OD):1.05(6H,s,Mex2),1.50-1.54(2H,m,CH2),1.63-1.68(2H,m,CH2),2.05(3H,s,Me),2.06-2.12(4H,m,CH2x2),2.33(2H,t,J=5.5Hz,CH2),2.40(3H,d,J=1 Hz,Me),6.01(1H,dq,J=8.5,1Hz,=CH),6.02(1H,br d,J=10.5Hz,=CH),6.39(1H,br s,=CH),6.81(1H,br d ,J=11Hz,=CH),6.83(1H,br t,J=11Hz,=CH),10.03(1H,d,J=8.5Hz, CHO)(Ref. 0056)
13C-NMR(d,CD3OD):13.71(Me),18.30(Me),20.42(CH2),25.06(CH2),29.00(Mex2),30.60(CH 2),32.01(CH2),33.61(C),40.41(CH2),121.76(CH),125.30(CH),130.57(CH),131.06(CH),133.41(C),133.76(CH),136.64(C),136.72(C),143.34(C),159.18(C),193.50(CHO)(Ref. 0056)
HRMS:M+,296.2138 Calc. for C21H28O:M 296.2139)(Ref. 0056)



synthethizedby 14-step reactions from 3,3-Dimethyl-2-oxo-cyclohexanecarbocylic acid methyl ester.(Ref. 0056)



45
Etretinate
ethyl (2E,4E,6E,8E)-9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-2,4,6,8-nona-tetraenoate/(2E,4E,6E,8E)-9-(4-Methoxy-2,3,6-trimethyl-phenyl)-3,7-dimethyl-nona-2,4,6,8-tetraenoic acid ethyl ester
VVA0045
Hiroyuki Kagechika
C23H30O3 354.483 Download ChemDraw structure file
Etretinate has been effectively used in the treatment of psoriasis and a variety of ichthyosiform disorders(Ref. 0064),but is highly toxic, at least partially due to its prolonged residence in the body(Ref. 0065). (Ref. 0063/0066)
104-108degC(dec)
Solvent volume (mi) for 1g of etretinate:Chloroform;1.91,Dichloromethane;1.94,Dioxane;4.47,Ethyl acetate;7.56,Aceton;10.2, Ether;15.8,Hexane;85.9,Ethanol;199,Methanol;381,Water;1.64x107
lmax=363 nm (e 1% 1cm;1313 in Dioxane)
1712,1612,1588,1448,1242,1148,1129,966,836cm-1(8)

m/z : M+354, 339,281,203,163,150,131(9)




Serum concentrations of etretinate and the active metabolite, the carboxylic acid derivative, are maximum after 3-5 h and 4-8 h, respectively. More than 99% of etretinate and the carboxylic acid bind to the proteins in the serum.
Etretinate is mainly absorbed at intestines, and metabolized at intestines and liver to form the active carboxylic acid.
Teratogenecity

46
Am80
4-[(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid
VVA5001
Hiroyuki Kagechika
Am80
C22H25O3N 351.439 Download ChemDraw structure file
As a potent RAR (retinoic acid receptor) agonist, Am80 induces the differentiation of human promyelocyte leukemia cells HL-60.(Ref. 5002) In all three subtypes of RAR (a, b, g), Am80 can activate both RARa and RARb. Therapeutic applications of Am80 are wide both in the field of darmatology and chemoprevention/therapy of cancer, and Am80 is also well known as potent therapeutic agent for acute promyelocytic leukemia (APL). (Ref. 5003)
231-232degC (Ref. 5001)
Soluble in many organic solvents such as ethanol, methanol, ethyl acetate, dichloromethane, dimethylsulfoxide (DMSO), dimethylformamide (DMF) and acetone.
UV lmax 207 (4.55), 232 (4.25), 281 (4.16).
(KBr) 1645, 1690 cm-1 (Ref. 5001)
1H-NMR (d, CD3OD, 100 MHz) 1.28 (s, 6 H), 1.30 (s, 6 H), 1.71 (s, 4 H), 7.29 (d, 1 H, J = 8 Hz), 7.46 (dd, 1 H, J = 2.8 Hz), 7.63 (d, 1 H, J = 2 Hz), 8.00 (d, 2 H, J = 8 Hz), 8.12 (d, 2 H, J = 8 Hz). (Ref. 5001); 13C-NMR (d, CD3OD, 100 MHz) 32.3 (q), 34.9 (s), 35.3 (s), 36.2 (t), 120.0 (d), 127.7 (d), 128.5 (d), 130.6 (d), 134.4 (s), 136.8 (s), 140.1 (s), 142.4 (s), 146.3 (s), 167.5 (s), 168.6 (s). (Ref. 5001)
M+ 351



Condensation of 5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthylamine and terephthalic acid monomethyl ester chloride gave methyl 4-[(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoate, which was hydrolized to Am80. (Ref. 5001)



47
Am580/CD336/Ro40-6055
4-[(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carboxamido]benzoic acid
VVA5002
Hiroyuki Kagechika
Am580
C22H25O3N 351.439 Download ChemDraw structure file
As a potent RAR (retinoic acid receptor) agonist, Am580 induces the differentiation of human promyelocyte leukemia cells HL-60.(Ref. 5001) In all three subtypes of RAR (a, b, g), Am580 can activate both RARa and RARb. Therapeutic potential of Am580 is similar to that of Am80. (Ref. 5003)
265-267degC(Ref. 5001)
Soluble in many organic solvents such as ethanol, methanol, ethyl acetate, dichloromethane, dimethylsulfoxide (DMSO), dimethylformamide (DMF) and acetone.
(KBr) 1655, 1678 cm-1
1H-NMR (d, CD3OD, 100 MHz) 1.33 (s, 6 H), 1.36 (s, 6 H), 1.76 (s, 4 H), 7.47 (d, 1 H, J = 8 Hz), 7.70 (dd, 1 H, J = 2, 8 Hz), 7.84 (d, 2 H, J = 8.5 Hz), 7.94 (d, 1 H, J = 2 Hz), 8.02 (d, 2 H, J = 8.5 Hz). (Ref. 5001)




Condensation of 5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthoic acid and methyl p-aminobenzoate gave methyl 4-[5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carboxamide]benzoate, which was hydrolyzed to Am580. (Ref. 5001)



48
TTNPB/Arotinoid/AGN191183/Ro13-7410
4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-propenyl]benzoic acid
VVA5003
Hiroyuki Kagechika
TTNPB
C24H28O2 348.478 Download ChemDraw structure file
As a pan-RAR agonist, TTNPB exerted in low doses a marked therapeutic effect in the antipapalloma test in mice.(Ref. 5004) And TTNPB and other arotinoids have very potent anticancer activity in experimental animals.(Ref. 5005)
247-248 degC (Ref. 5004)
UVmax(ethanol), 304 (22600). (Ref. 5004)
1H-NMR (d, CDCl3/DMSO, 60 MHz) 1.38 (s, 6 H), 1.42 (s, 6 H), 1.79 (s, 4 H), 2.37 (d, 3 H, J = 1Hz), 6.88 (s broad, 1 H), 7.28-7.60 (m, total of 5 H), 8.08 (2 H). (Ref. 5004)




Wittig reaction of ethyl 4-formylbenzoate with [1-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-ethyl]triphenylphosphonium bromide gave ethyl 4-[(E)-2-5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphtyl)propenyl]banzoate, which was hydrolyzed to TTNPB. (Ref. 5004)



49
Am555S/TAC-101
4-[[3,5-Bis(trimethylsilyl)benzoyl]amino]benzoic acid
VVA5004
Hiroyuki Kagechika
Am555S
C20H27O3Si2 371.598 Download ChemDraw structure file
As a potent RAR agonist, Am555S induces the differentiation of human promyelocyte leukemia cells HL-60.(Ref. 5006) And this compound strongly activate RARa, weakly activate RARb, and does not or only slightly activate RARg in all three subtypes of RAR.(Ref. 5007) Because of the subtype selectivity, Am555S could be beneficial in clinical use mostly at the view point of adverse effects.(Ref. 5003)
280 degC (Ref. 5006)
Soluble in many organic solvents such as Ethyl acetate, dichloromethane, dimethylformamide, and ethanol.
1H-NMR (d, CDCl3, 400 MHz) 0.33 (s, 18 H), 7.80 (d, 2 H, J = 8.5 Hz), 7.85 (br s, 1 H), 7.92 (br s, 1 H), 7.95 (br s, 2 H), 8.13 (d, 2 H, J = 8.5 Hz). (Ref. 5006)




A mixture of 3,5-bis(trimethylsilyl)benzoic acid, CaCO3, SOCl2, and a drop of DMF in dry benzene ws stirred at room temperature. After filteration and removal of the solvent, the residue was dissolved in dry benzene. To this solution were added methyl 4-aminobenzoate and trimethylamine, and the mixture was stirred. The crude mixture was chromatographed on silica gel to give methyl 4-[[3,5-bis(trimethylsilyl)phenyl]carboxamide]benzoate, which was hydrolized to give Am555S. (Ref. 5006)



50
Ch55
(E)-4-[3-[3,5-Bis(1,1-dimethylethyl)]phenyl-3-oxo-1-propenyl]benzoic acid
VVA5005
Hiroyuki Kagechika
Ch55
C24H28O3 364.477 Download ChemDraw structure file
As a potent RAR agonist, Ch55 induces the differentiation of human promyelocyte leukemia cells HL-60.(Ref. 5008) Different from retinoic acids, this retinoid does not bind to cellular retinoic acid binding protein (CREBP).(Ref. 5009)
202-203.5 degC (Ref. 5008)
Soluble in many organic solvents such as Ethyl acetate, dichloromethane, dimethylformamide, and ethanol.
1H-NMR (d, CDCl3, 100 MHz) 1.41 (s, 18 H), 7.64 (d, 1 H, J = 16 Hz), 7.69 (d,1 H, J = 2 Hz), 7.70 (d, 2 H, J = 8 Hz), 7.74 (d, 1 H, J = 16 Hz), 7.83 ( d, 2 H, J = 2 Hz), 8.10 (d, 2 H, J = 8 Hz). (Ref. 5007)




3,5-di-tert-butylacetophenone and terephatalaldehydic acid methyl ester were dissolved in methanol and 1 N NaOH was added. The mixuture was stirred overnight and extracted with ethyl acetate. The crude product was purified by recrystallization to give Ch55. (Ref. 5008)



51
Fv80
4-(6,7,8,9-Tetrahydro-6,6,9,9-tetramethyl-4H-4-oxo-naphto[2,3-b]pyran-2-yl)benzoic acid
VVA5006
Hiroyuki Kagechika
Fv80
C24H24O4 376.445 Download ChemDraw structure file
As a potent RAR agonist, Fv80 induces the differentiation of human promyelocyte leukemia cells HL-60.(Ref. 5008)
>300 degC (Ref. 5008)
Soluble in many organic solvents such as Ethyl acetate, dichloromethane, dimethylformamide, and ethanol.
1H-NMR (d, CDCl3-DMSO-d6, 100 MHz) 1.37 (s, 12 H), 1.77 (s, 4 H), 2.8-3.7 (br s, OH), 6.86 (s, 1 H), 7.57 (s, 1 H), 8.05 (d, 2 H, J = 8Hz), 8.06 (s,1 H), 8.16 (d, 2 H, J = 8 Hz). (Ref. 5008)




Concentrated H2SO4 was added to a solution of methyl 4-[1-hyroxy-3-oxo-3-(5,6,7,8-tetrahydro-3-hydroxy-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoate in AcOH and refluxed for 30 min. The solution was poured into water and extracted with AcOEt. After removal of the solvent, the crude product was purified by silica gel chlumn chromatography to give methyl 4-(6,7,8,9-tetrahydro-6,6,9,9-tetramethyl-4H-4-oxonaphtho[2,3-b]pyran-2-yl)benzoate, which was hydrolyzed to give Fv80. (Ref. 5008)



52
Re80
4-[1-Hydroxy-3-oxo-3-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl2-naphthalenyl)-1-propenyl]benzoic acid
VVA5007
Hiroyuki Kagechika
Re80
C24H26O5 394.460 Download ChemDraw structure file
As a potent RAR agonist, Fv80 induces the differentiation of human promyelocyte leukemia cells HL-60.(Ref. 5008)
232-233 degC (Ref. 5008)
Soluble in many organic solvents such as Ethyl acetate, dichloromethane, dimethylformamide, and ethanol.
1H-NMR (d, CDCl3, 100 MHz) 1.31 (s, 6 H), 1.35 (s, 6 H), 1.72 (s, 4 H), 3.97 (s, 3 H), 6.83 (s, 1 H), 6.96 (s, 1 H), 7.68 (s, 1 H), 8.00 (d, 2 H, J = 8 Hz), 8.10 (d, 2 H, J = 8 Hz), 11.62 (s, 1 H), 15.51 (s, 1 H). (Ref. 5008)




To a solution of terephathalic acid 3-acetyl-5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl methyl ester in pyridine was added KOH, and the mixture was stirred overnight. The solution was poured into 20 % of AcOH and extracted with AcOEt. After evapolation, the crude mixture was purified on siliga gel column chromatography to give methyl 4-[1-hydroxy-3-oxo-3-(5,6,7,8-tetrahydro-3-hydroxyl-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoate, which was hydrolyzed to Re80.(Ref. 5008)



53
AGN 193836
2,6-Difluoro-4-[(3'-hydroxy-4'-bromo-5',6',7',8'-tetrahydro-5',5',8',8'-tetramethylnaphtahlen-2'-yl)carbamoyl]benzoic acid
VVA5008
Hiroyuki Kagechika
AGN 193836
C22H22O4NBrF2 482.315 Download ChemDraw structure file
AGN 193836 is the RARa specific agonist, which binds only to and transactivates exclusively through RARa. Such a subtype selective agonsit is very likely to associate with fewer toxic effects and hence would be a useful drug of improved therapeutic index in the treatment of a subset of retinoid responsive diseases.(Ref. 5010)
1H-NMR (d, acetone-d6, 300 MHz) 10.23 (b, 1H), 8.01 (s, 1 H), 7.52 (d, 2 H, J = 10.2 Hz), 4.8 (b, 1 H), 1.75 (m, 2 H), 1.65 (m, 2 H), 1.60 (s, H), 1.31 (s, 6 H).(Ref. 5010)
Ms (m/z) 483, 481, 439, 401 (base peak) (Ref. 5010)



1-bromo-2-methoxymethoxy5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalene-3-yl acid and ehyl 4-amino-2,6-difluorobenzoate were coupled by using EDC and DMAP in dichloromethane to afford ethyl 2,6-difluoro-4-[(3'-methoxymethoxy-4'-bromo-5',6',7',8'-tetrahydro-5',5',8',8'-tetramethylnaphthalene-2'-yl)carbamoyl]benzoate, which was hydrolyzed and the methoxymethyl group was removed to yield AGN 193836.(Ref. 5010)



54
CD666
(E)-4-[3-Hydroxy-3-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl2-naphthyl)-2-propenyl]benzoic acid
VVA5009
Hiroyuki Kagechika
CD666
C24H28O3 364.477 Download ChemDraw structure file
CD666 selectively binds to and activates RARg. The affinity of CD666 for RARg is at least 35 time greater than for RARa or RARb. Since RARg is predominantly expressed in adult skin, the specific ligand for this subtype could provide therapeutic entities with a higher therapeutic index at lower teratogenic risk. (Ref. 5011)
137-138 degC (Ref. 5011)
1H-NMR (d, DMSO-d6) 1.03 (s, 6 H), 1.05 (s, 6 H), 1.43 (s, 4 H), 5.02 (t, 1 H), 6.31-6.56 (2 H), 6.91-7.69 (7 H). (Ref. 5011)
EI-MS: m/z 364 (M+), 347 (M-OH)+. (Ref. 5011)



Aldol type coupling between 1-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethylnaphthalene-2-yl)ethanone and Methl 4-formylbenzoate gave 4-[3-Oxo-3-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-naphthalene-2-yl)propenyl]benzoic acid, which was reduced to afford CD666. (Ref. 5011)



55
AGN 193639
4-[[(5,5-Dimethyl-5,6-dihydro-8-(2-thienyl)-2-naphthlenyl)carbonyl]amino]benzoic acid
VVA5010
Hiroyuki Kagechika
AGN 193639
C24H21O3NS 403.494 Download ChemDraw structure file
AGN 193639 can bind to all three subtypes (a, b, g) of RAR, but acts as an RARb selective agonist and exhibits RARa/g antagonistic activities in terms of transactivation activity. (Ref. 5012)
1H-NMR (d, acetone-d6, 300 MHz) 1.34 (s, 6 H), 2.38 (d, 2 H, J = 4.9 Hz), 6.27 (t, 1 H, J = 4.9 Hz), 7.12 (m, 2 H), 7.44 (dd, 1 H, J = 1.3, 5.0 Hz), 7.55 (d, 1 H, J = 8.0 Hz), 7.88 (m, 3 H), 8.02-7.91 (m, 3 H), 9.75 (s, 1 H); 13C-NMR (d, acetone-d6, 75 MHz) 167.2, 167.7, 150.0, 144.6, 142.7, 134.2, 133.9, 133.1, 131.5, 129.6, 128.3, 127.9, 126.8, 126.3, 125.5, 125.1, 120.2, 39.1, 34.5, 28.2. (Ref. 5012)
EI-MS: m/z 403 (M+) (Ref. 5012)



Amidation between 5,5-dimethyl-5,6-dihydro-8-(2-thienyl)-2-naphthalenecarboxylic acid and ethyl 4-aminobenzoate gave ethyl 4-[[(5,5-dimethyl-5,6-dihydro-8-(2-thienyl)-2-naphthalenyl)carbonyl]amino]benzoate, which was hydrolyzed to afford AGN 193639. (Ref. 5012)



56
Adapalene/CD271/Differin
6-[3-(1-Adamantyl)-4-methoxyphenyl]-2-naphthoic Acid
VVA5011
Hiroyuki Kagechika
Adapalene
C28H28O3 412.520 Download ChemDraw structure file
Adapalene can bind selectively to RARb and RARg and induce the F9 teratocarcinoma cell-differentiation as an RAR agonist. (Ref. 5013) In vitro and in vivo studies have shown that adapalene affects the cellular differentiation, keratinization, and inflammatory processes that are abnormall present in acne vulgaris. With its chemical stability, adapalene is clinically effective as an anti-acne agent. (Ref. 5014)
mp 319-322 degC (Ref. 5013)
IR (KBr) 1690, 1300, 1235 cm-1 (Ref. 5013)
1H-NMR (d, DMSO-d6, 250 MHz) 1.75 (s, 6 H), 2.06 (s, 3 H), 2.13 (s, 6 H), 3.86 (s, 3 H), 7.11 (d, 1 H, J = 8.5 Hz), 7.57 (d, 1 H, J = 2 Hz), 7.65 (dd, 1 H, J = 8.5, 2 Hz), 7.88 (dd, 1 H, J = 8.5, 2 Hz), 7.97 (dd, 1 H, J = 8.5, 2 Hz), 8.07 (d, 1 H, J = 8.5 Hz), 8.15 (d, 1 H, J = 8.5 Hz), 8.22 (br s, 1 H), 8.60 )br s, 1 H). (Ref. 5013)
MS (EI) m/z 421 (M+) (Ref. 5013)



2-(1-Adamantyl)-4-bromoanisole was converted into zincate derivative and then condensated with methyl 6-bromo-2-naphthoate to afford methyl 6-[3-(1-adamantyl)-4-methoxyphenyl]-2-naphthoate, which was saponified to give adapalene. (Ref. 5013)



57
Tazatotene/AGN190168/Tazorac/Zorac
Ethyl 6-[(3,4-dihydro-4,4-dimethyl-2H-1-benzothiopyran-6-yl)ethynyl]-3-pyridinecarboxylate
VVA5012
Hiroyuki Kagechika
Tazarotene
C21H21O2NS 351.463 Download ChemDraw structure file
As an RARb/g selective agonist, tazarotene is being developed as a potent therapeutic agent foracne and psoriasis. (Ref. 5015/5016/5017)









58
CD437/AHPN
6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthoic acid
VVA5013
Hiroyuki Kagechika
CD437
C27H26O3 398.494 Download ChemDraw structure file
CD437 can selectively bind to RARg subtype and induce the differentiation of F9 teratocarcinoma cell in vitro. (Ref. 5013) The RARg selectivity is conserved in a functional transactivation assay. (Ref. 5011) Since RARg is predominantly expressed in adult skin, such a specific ligand could provide therapeutic entities with a higher therapeutic index at lower teratogenic risk.
mp 274-275 degC (Ref. 5013)
IR (KBr) 1690, 1230 cm-1 (Ref. 5013)
1H-NMR (d, DMSO-d6, 250 MHz) 1.76 (s, 6 H), 2.07 (s, 3 H), 2.17 (s, 6 H), 6.92 (d, 1 H, J = 8.2 Hz), 7.50 (d, 1 H, J = 8.2 Hz), 7.52 (s, 1 H), 7.86 (dd, 1 H, J = 8.5, 2 Hz), 7.97 (dd, 1 H, J = 8.5, 2 Hz), 8.06 (d, 1 H, J = 8.5 Hz), 8.09 (d, 1 H, J = 8.5 Hz), 8.17 (s, 1 H), 8.59 (s, 1 H). (Ref. 5013)
MS m/z 398 (M+) (Ref. 5013)



Methyl 6-[3-(1[Adamantyl)-4-[tert-butyldimethylsilyl)-oxy]phenyl]-2-naphthoate was deprotected with TBAF and saponificated to yield CD437. (Ref. 5013)



59
BMS961
4-[[hydroxy(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)acetyl]amino]benzoic acid
VVA5014
Hiroyuki Kagechika
BMS961
C23H27NO4 381.465 Download ChemDraw structure file
BMS961 can be a potent therapeutic agent for various skin disorders because of its RARg selective agonistic activity. The RARg selectivity over RARa or RARb was elucidaded in terms of the docking simulation between RARs and the ligand. (Ref. 5018)









60
CD394/TD-550
4-[(4-methoxy-3-tricyclo[3.3.1.13,7]dec-1-ylbenzoyl)amino]benzoic acid
VVA5015
Hiroyuki Kagechika
CD394
C25H27NO4 405.486 Download ChemDraw structure file
Like other retinoids, CD394 was proved to be a promising agent for cancer chemoprevention and therapy. (Ref. 5019) As an RAR antagonist, CD394 inhibits the activity of an RAR agonist. (Ref. 5020) And CD394 does not have the ability to bind to cellular retinoic acid-binding protein (CRABP). (Ref. 5021)









61
AGN193109/CD3106
4-[[5,6-dihydro-5,5-dimethyl-8-(4-methylphenyl)-2-naphthalenyl]ethynyl]benzoic acid
VVA5016
Hiroyuki Kagechika
AGN193109
C28H24O2 392.489 Download ChemDraw structure file
AGN193109 can bind strongly to RARs but not activate them. (Ref. 5022) Furthermore, AGN193109 was found to be an inverse agonist for RARs, which can inhibit the basal transactivation activities in the absence of an RAR agonist. (Ref. 5023) Because of the distinct function from classical agonists and antagonsits, the inverse agonist may posesse unique therapeutic potentials.





7-bromo-4,4-dimethyl-3,4-dihydro-2H-naphthalene-1-one was subjected to Pd catalyzed coupling reaction with TMS-acetylene. After removal of the TMS group, the terminal acetylene was subjected to a second Pd catalyzed coupling reaction with Ethyl 4-iodobenzoate. Convertion of the resulting Ethyl 4-(5,5-dimethyl-8-oxo-5,6,7,8-tetrahydronaphthalene-2-ylethynyl)benzoate to vinyl triflate followed by Pd catalyzed coupling with organozinc reagent prepared from 4-bromotoluene provide the ethyl ester of AGN193109, which was saponified to AGN193109. (Ref. 5022)



62
AGN194574
2,6-difluoro-4-[[8-bromo-2,2-dimethyl-4-(4-methylphenyl)-6-chromanyl)carbonyl]amino]benzoic acid
VVA5017
Hiroyuki Kagechika
AGN194574
C26H20O4NBrF2 528.342 Download ChemDraw structure file
As an RARa selective antagonist, AGN194574 can bind to RARa with 1000-fold and 10000-fold higher affinity than to RARb and RARg respectively, without causing the activation of the receptor. (Ref. 5024) Because RAR subtypes have distinct roles and tissue distribution patterns, RAR subtype selective retinoids will have more restricted pharmacological effects and better therapeutic indices in specific disease applications.
1H-NMR (d, acetone-d6) 9.33 (bs, 1 H), 8.07 (d, 1 H, J = 2.1 Hz), 7.66 (d, 1 H, J = 2.1 Hz), 7.54 (d, 2 H, J = 9.9 Hz), 7.27 (s, 4 H), 5.88 (s, 1 H), 2.38 (s, 3 H), 1.56 (s, 6 H). (Ref. 5024)
MS (EI) m/e 514, 512, 485, 483, 47, 468. (Ref. 5024)



8-Bromo-2,2-dimethyl-4-(4-methylphenyl)-4(2H)-chroman-6-carboxylic acid and ethyl 4-amino-2,6-difluorobenzoate ware coupled using EDC and DMAP to afford Ethyl 2,6-difluoro-4-[[[8-bromo-2,2-dimethyl-4-(4-methylphenyl)-6-chromanyl]carbonyl]amino]benzoate, which was hydrolyzed to AGN194574. (Ref. 5024)



63
Ro41-5253
4-[(1E)-2-[7-(heptyloxy)-3,4-dihydro-4,4-dimethyl-1,1-dioxo-2H-1-benzothiopyran-6-yl]-1-propenyl]benzoic acid
VVA5018
Hiroyuki Kagechika
Ro41-5253
C28H36O5S 484.648 Download ChemDraw structure file
Ro41-5253 can bind selectively bind to RARa without causing activation of the receptor. Thus, Ro41-5253 inhibit the activity of both natural and synthetic RARa agonists. As an RARa selective atonist, Ro41-5253 can inhibit retinoid-induced differentiation of the promyelocytic cell line HL-60 and revert retinoid-induced inhibition of mouse B-cell proliferation. (Ref. 5025)









64
BIPh
4-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-1-phenyl-1H-naphth[2,3-d]imidazol-2-yl)benzoic acid
VVA5019
Hiroyuki Kagechika
BIPh
C28H28O2N2 424.534 Download ChemDraw structure file
As an RAR pan-antagonist, BIPh can inhibit the binding of an RAR agonist to RARs and the differentiation of promyeocytic leukemia cel l line HL-60 caused by an RAR agonist. (Ref. 5026)
mp 297 degC (Ref. 5026)
IR (KBr) 1690, 1610 cm-1 (Ref. 5026)
1H-NMR (d, DMSO-d6, 400 MHz) 7.88 (d, 2 H, J = 8.4 Hz), 7.77 (s, 1 H), 7.56 (m, 3 H), 7.40 (d, 2 H, J = 7 Hz), 7.09 (s, 1 H), 1.70 (s, 4 H), 1.36 (s, 6 H), 1.23 (s, 6 H). (Ref. 5026)




A mixture of N-phenyl-5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalene-2,3-diamine and methyl terephthalaldehydrate were heated to give methl ester of BIPh, which was hydrolyzed to afford BIPh. (Ref. 5026)



65
SR11335
4-[5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-4-(2,2,2-trifluoro-1-methoxyethyl)-2-antracenyl]benzoic acid
VVA5020
Hiroyuki Kagechika
SR11335
C28H29O3F3 470.523 Download ChemDraw structure file
As an RAR pan-agonist, SR11335 represses the retinoid-induced events such as the transcriptional activation of the HIV-1-RARE (Ref. 5027), various subtypes of RXR-RAR heterodimer activaon and the differentiation of promyocytic cell line HL60. (Ref. 5028) Since retinoids have been shoen to enhance replication of several viruses such as the human immunodeficiency virus type 1 (HIV-1) and human cytomegalovirus, an RAR antagonist can be a potent therapeutic agent for viral infections.









66
ER27191
4-[4,5,7,8,9,10-hexahydro-7,7,10,10-tetramethyl-1-(3-prtidylmethyl)anthra[1,2-b]pyrrol-3-yl]benzoic acid
VVA5021
Hiroyuki Kagechika
ER27191
C33H34O2N2 490.635 Download ChemDraw structure file
As an potent RAR antagonist, ER27191 blocks the binding of all-trans retinoic acid to RARs and the differentiation of HL-60 cells caused by all-trans retinoic acid. Because of this chracter, ER28191 can be used for the treatment of hypervitaminosis A. (Ref. 5029)
mp 282 degC (Ref. 5029)
1H-NMR (d, DMSO-d6, 400 MHz) 0.91 (s, 6 H), 1.17 (s, 6 H), 1.50 (s, 4 H), 2.68-2.85 (m, 4 H), 5.58 (s, 2 H), 6.90 (s, 1 H), 7.15 (s, 1 H), 7.34-7.43 (m, 3 H), 7.53 (d, 2 H, J = 8.4 Hz), 7.92 (d, 2 H, J = 8.4 Hz), 8.37 (brs, 1 H), 8.46 (brs, 1 H). (Ref. 5029)
MS 490 (M+) (Ref. 5029)



The coupling reaction between 3-(aminomethyl)pyridine and methyl 4-[1-(3,4,5,6,7,8-hexahydro-5,5,8,8-tetramethyl-1(2H)-oxoanthracen-2-yl)-2,2-dimethoxyethyl]benzoate was proceeded in AcOH to yield methyl 4-[4,5,7,8,9,10-hexahydro-7,7,10,10-tetramethyl-1-(3-pyridilmethyl)anthra[1,2-b]pyrrol-3-yl]benzoate, which was hydrolyzed to ER27191. (Ref. 5029)



67
LE135
4-(5H-7,8,9,10-tetrahydro-5,7,7,10,10-pentamethylbenzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoic acid
VVA5022
Hiroyuki Kagechika
LE135
C29H30O2N2 438.561 Download ChemDraw structure file
LE135 is an RARb selective antagonist (Ref. 5026/5030), which bolcks the binding and differentiation-inducing activity of all-trans retinoic acid only on RARb. Because of the activity, LE135 exhibits AP-1 activity and retinoic acid-induced apoptosis in human breast cancer cells. (Ref. 5031)
mp 281-285 degC (Ref. 5026)
IR (KBr) 1705, 1605 cm-1. (Ref. 5026)
1H-NMR (d, CDCl3, 400 MHz) 8.13 (d, 2 H, J = 8.4 Hz), 7.87 (d, 2 H, J = 8.4 Hz), 7.40 (m, 1 H), 7.24 (s, 1 H), 7.07 (d, 1 H, J = 8.1 Hz), 6.96 (m, 2 H), 6.84 (s, 1 H), 3.27 (s, 3 H), 1.66 (s, 4 H), 1.32 (s, 3 H), 1.28 (s, 3 H), 1.26 (s, 3 H), 1.25 (s, 3 H). (Ref. 5026)
MS M+ 438. (Ref. 5026)



Methyl 4-[[5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-3-(N-methyl-N-phenylamino)-2-naphthalenyl]carbamoyl]benzoate was heated with polyphosphoric acid to give methyl 4-(5H-7,8,9,10-tetrahydro-5,7,7,10,10-pentamethylbenzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoate, which was hydrolyzed to afford LE135. (Ref. 5026)



68
LE540
4-(13H-10,11,12,13-Tetrahydro-10,10,13,13,15-pentamethyldinaphtho[2,3-b] [1,2-e][1,4]diazepin-7-yl)benzoic acid
VVA5023
Hiroyuki Kagechika
LE540
C33H32O2N2 488.619 Download ChemDraw structure file
In spite of the low binding afinity to RARs, LE540 inhibits the HL-60 cells differentiation induced by an RAR agonist in a dose-dependent manner. (Ref. 5030) Although LE540 works as an antagonist in all three subtype of RARs at high concentration, there is slight selectivity toward RARb.
mp >300 degC (Ref. 5030)
1H-NMR (d, CDCl3, 400 MHz) 8.87 (d, 1 H, J = 8.4 Hz), 8.20 (d, 2 H, J = 8.4 Hz), 7.95 (d, 2 H, J = 8.8 Hz), 7.85 (d, 1 H, J = 7.7 Hz), 7.65 (m, 3 H), 7.42 (s, 1 H), 7.30 (s, 1 H), 7.17 (d, 1 H, J = 8.4 Hz), 3.08 (s, 3 H), 1.68 (s, 4 H), 1.38 (s, 3 H), 1.36 (s, 3 H), 1.22 (s, 3 H), 1.21 (s, 3 H). (Ref. 5030)




Methyl 4-[[5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-3-[N-methyl-N-(1-naphthyl)amino]-2-naphthyl]carbamoyl]benzoate was cyclized in dichloromethane and polyphosphoric acid and the product was hydrolized under basic condition to give LE540. (Ref. 5030)



69
BR403
4-[4-(2-proryl-1,2-dicarba-closo-dodecaboran-1-yl)phenylamino]benzoic acid
VVA5024
Hiroyuki Kagechika
BR403
C15H27O2NB10 361.490 Download ChemDraw structure file
As a RAR pan-agonist, BR403 induces the differentiation of HL-60 cells and activates the expression of the target genes of RARs. (Ref. 5032) Although the agonistic activitis of BR403 is not as strong as Am80, one of the majorest RAR agonist, BR403 possesses significant therapeutic potentials in the field of boron neutron capture therapy (BNCT) because of its high density of boron atoms. (Ref. 5032/5033)





4-(2-propyl-1,2-dicarba-closo-dodecaboran-1-yl)aniline and ethyl 4-iodobenzoate were coupled in the presense of tris(dibenzylidenacetone)dipalladium(0) and (R)-BINAP to give ethyl 4-(2-propyl-dicarba-closo-dodecabaran-1-yl)phenylamino benzoate, which was methylated on the nitrogen atom and hedrolyzed to yield BR403. (Ref. 5032)



70
BMS753/BMS194753
4-[[(2,3-dihydro-1,1,3,3-tetramethyl-2-oxo-1H-inden-5-yl)carbonyl]amino]benzoic acid
VVA5025
Hiroyuki Kagechika
BMS753
C21H21O4N 351.396 Download ChemDraw structure file
BMS753 is an RARa selective agonist. (Ref. 5034)









71
BMS411/BMS185411
4-[[5,6-dihydro-5,5,-dimethyl-8-phenyl-2-naphthalenyl)carbonyl]amino]benzoic acid
VVA5026
Hiroyuki Kagechika
BMS411
C26H23O3N 397.466 Download ChemDraw structure file
BMS411 is an RARb selective agonist. (Ref. 5034)









72
BMS228987
4-[2-[8-(3,3-dimethyl-but-1-enyl)-5,5-dimethyl-5,6-dihydro-naphhalen-2-yl]vinyl]benzoic acid
VVA5027
Hiroyuki Kagechika
BMS228987
C27H30O2 386.526 Download ChemDraw structure file
BMS228987 is characterized as a selective RARb and RARa agonist of high affinity. (Ref. 5034)









73
BMS394/BMS270394
3-Fluoro-4-[2-(R)-hydroxy-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalene-2-yl)acetylamino]benzoic acid
VVA5028
Hiroyuki Kagechika
BMS270394
C23H26O4NF 399.455 Download ChemDraw structure file
BMS270394 is an RARg specific agonist. (Ref. 5034)









74
BMS204493/BMS493
4-[2-5,5-dimethyl-8-(4-tolyl)-5,6-dihydronaphthalen-2-yl)vinyl]benzoic acid
VVA5029
Hiroyuki Kagechika
BMS493
C28H26O2 394.505 Download ChemDraw structure file
BMS493 is an RAR pan-antagonist. (Ref. 5034)









75
BMS614/BMS195614
4-[[[5,6-dihydro-5,5-dimethyl-8-(3-quinolinyl)-2-naphthalenyl]carbonyl]amino]benzoic acid
VVA5030
Hiroyuki Kagechika
BMS614
C29H24O3N2 448.513 Download ChemDraw structure file
BMS195614 is an RARa selective antagonist (Ref. 5034) and the mechanism of the activity has been eagarly explored. (Ref. 5035/5036)









76
CD367/AGN191312/SR3961
4-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-anthracenyl)-benzoic acid
VVA5031
Hiroyuki Kagechika
CD367
C25H26O2 358.473 Download ChemDraw structure file
As an RAR agonist, CD367 makes the mucociliary epithelium of the trachea lose its normal pattern of differentiaion and CD367 makes F9 embryonal carcinoma cells differentiate into parietal endoderm. (Ref. 5037) But several biological activities of CD367, such as apoptosis induction, are not mediated through the retinoidal pathway.
mp 270-272 degC (Ref. 5037)
UV lmax (ethanol) 224 (36000), 267 (51000), 303 (18000). (Ref. 5037)
IR (mull) 1680, 1610, 1425 cm-1. (Ref. 5037)
1H-NMR (d, CDCl3/5% DMSO-d6, 400 MHz) 1.28 (s, 12 H), 1.66 (s, 4 H), 7.52 (dd, 2 H, J = 2, 8 Hz), 7.65 (d, 2 H, J = 8 Hz), 7.68 (s, 1 H), 7.69 (d, 1 H, J = 8 Hz), 7.73 (s, 1 H), 7.88 (br s, 1 H), 8.02 (d, 2 H, J = 8 Hz). 13C-NMR (d, CDCl3/5% DMSO-d6, 400 MHz) 32.5, 34.6, 35.0, 124.3, 124.7, 125.4, 125.5, 126.9, 127.8, 129.4, 130.3, 131.3, 131.9, 136.4, 145.0, 145.5, 168.4. (Ref. 5037)




Friedel-Crafts alkylation of ethyl 4-(2-naphthalenyl)benzoate with 2,5-dichloro-2,5-dimethylhexane using AlCl3 gave 4-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-anthracenyl)benzoate, which was hydrolyzed to afford CD367. (Ref. 5037)



77
CD564
6-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbonyl]-2-naphthalenecarboxylic acid
VVA5032
Hiroyuki Kagechika
CD564
C26H26O3 386.483 Download ChemDraw structure file
The transactivation assay using all three subtypes of RAR showed that CD564 is an RAR b/g selective agonist. (Ref. 5038/5039)









78
SR11228
5-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naththalenyl)carbonyl]-2-naphthlenecarboxylic acid
VVA5033
Hiroyuki Kagechika
SR11228
C26H26O3 386.483 Download ChemDraw structure file
Although SR11228 induces transactivation of RARs only weakly, it shows potent anti-AP-1 activity. And SR11228 cannnot induce differentiation in F-9 cells, while the have the ability to inhibit efficiently proliferation of cancer cells. Since adverse effects are the main problem of retinoid therapy, such a new type of retinoid can be a useful therapeutic agent. (Ref. 5040)









79
SR11254
(E)-6-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)(hydroxyimino)methyl]-2-naphthalenecarboxylic acid
VVA5034
Hiroyuki Kagechika
SR11254
C36H27O3N 521.605 Download ChemDraw structure file
SR11254 showed RARg selectivity in transactivation assay. (Ref. 5039) RAR subtype selective retinoids can be reasonable therapeutic agents with reduced adverse effects.
IR(KBr) 2960, 2926, 1692, 1416. (Ref. 5039)
1H-NMR (d, DMSO-d6) 1.15 (s, 6 H), 1.21 (s, 6 H), 1.62 (s, 4 H), 7.03 (dd, 1 H, J = 8.2, 1.8 Hz), 7.29 (d, 1 H, J = 8.3 Hz), 7.47 (d, 1 H, J = 1.8 Hz), 7.50 (d, 1 H, J = 1.5 Hz), 7.92 (s, 1 H), 7.98 (dd, 1 H, J = 8.6, 1.6 Hz), 8.05 (d, 1 H, J = 8.8 Hz), 8.17 (d, 1 H, J = 8.6 Hz), 8.64 (s, 1 H), 11.38 (s, 1 H). (Ref. 5039)
MS (DCI) m/e 402 (MH+). (Ref. 5039)



The E-isomer of methyl 6-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalen-2-yl)[(pivaloyloxy)imino]methyl]naphthalene-2-carboxylete was saponified at room temperature to give SR11254.(Ref. 5039)



80
4-HPR/Fenretinide/Ro22-4667
N-(4-hydroxyphenyl)-retinamide
VVA5035
Hiroyuki Kagechika
4-HPR
C26H33O2 377.539 Download ChemDraw structure file
4-HPR is a synthetic analog of retinoic acid, which has a potential as chemopreventative agent for cancer. A key distinction between 4-HPR and retinoic acid lies in the ability of 4-HPR to induce apoptosis. And it has revealed that apoptosis in response to 4-HPR primarily occurs by a receptor-independent mechanism. (Ref. 5041)









81
MX781
4-[3-[4-[(2-methoxyethoxy]-3-tricyclo[3..3.1.13,7]dec-1-ylphenyl]-3-oxo-1-propenyl]benzoic acid
VVA5036
Hiroyuki Kagechika
MX781
C30H34O6 490.587 Download ChemDraw structure file
MX781 is an RAR-pan antagonist and is an effective therapeutic agent against estrogen receptor-positive and -negative breast cancer cells through the induction of apoptosis. (Ref. 5042)









82
AGN194301
4-[[[8-bromo-2,2-dimethyl-4-(4-methylphenyl)2H-1-benzopyran-6-yl]carbonyl]amino]2-fluorobenzoic acid
VVA5037
Hiroyuki Kagechika
AGN194301
C26H21O4BrFN 510.352 Download ChemDraw structure file
AGN194301 is an RARa selective antagonist both in a binding assay and in a transactivation assay. (Ref. 5043)
1H-NMR (d, acetone-d6) 8.09 (d, 1 H, J = 2.1 Hz), 7.91 (t, 1 H, J = 7.5 Hz), 7.68 (d,1 H, J = 2.1 Hz), 7.83 (dd, 1 H, J = 2.1, 12.8 Hz), 7.50 (dd, 1 H, J = 2.1, 7.5 Hz), 7.27 (s, 4 H), 5.87 (s, 1 H), 2.37 (s, 3 H), 1.56 (s, 6 H). (Ref. 5043)
MS (EI) m/e 511, 503, 496, 494, 452, 450, 357, 355, 312. (Ref. 5043)



Ethyl 2-Fluoro-4-[[[8-bromo-2,2-dimethyl-4-(4-methylphenyl)-6-chromanyl]carbonyl]amino]benzoate was saponified to give AGN194301. (Ref. 5043)



83
SR11237/BMS188649
4-[2-(5,6,7,8-tetrahydro-5,5,8,8
VVA5038
Hiroyuki Kagechika
SR11237
C24H28O4 380.477 Download ChemDraw structure file
SR11237 is the first reported RXR specific agonist, which binds to and activates RXR as potent as 9-cis retinoic acid. (Ref. 5044) Since RXR ligands can control retinoidal action and other nuclear receptors' function by regulating RXR- heterodimers, an adeuate RXR ligand can be a therapeutically useful agent.









84
LG1069
4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthalenyl)ethenyl]benzoic acid
VVA5039
Hiroyuki Kagechika
LG1069
C24H28O2 348.478 Download ChemDraw structure file
LG1069 binds to and activates all three subtypes of RXR dose dependently (Ref. 5045). In RXR-RAR heterodimer action, LG1069 cannot activate the heterodimer alone but it can enhance the potency of RAR agonist. Thus RXR agonists such as LG1069 are called retinoid synergists.
mp 234 degC. (Ref. 5045)
UV l (MeOH) 264 nm (16400). (Ref. 5045)
1H-NMR (d, CDCl3) 1.28 (s, 6 H), 1.31 (s, 6 H), 1.70 (s, 4 H), 1.95 (s, 3 H), 5.35 and 5.83 (s, 2 H), 7.08 (s, 1 H), 7.13 (s, 1 H), 7.38 (d, 2 H, J = 8.1 Hz), 8.03 (d, 2 H, J = 8.1 Hz). (Ref. 5045)
HRFAB-MS (M + H) 349.2178. (Ref. 5045)



Condensation of methyl 4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoate with methyltriphenylphosphonium bromide-sodium amide in tetrahydrofuran afforded the corresponding olefin, which was hydrolyzed to give LG1069. (Ref. 5045)



85
LG100268
6-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopropyl]nicotinic acid
VVA5040
Hiroyuki Kagechika
LG100268
C24H29O2N 363.493 Download ChemDraw structure file
LG100268 binds strongly to and strongly activates all three subtypes of RXR. In RXR-RAR heterodimer action, LG100268 cannot activate the heterodimer alone but it can enhance the potency of RAR agonist. Thus RXR agonists such as LG100268 are called retinoid synergists. (Ref. 5046)
mp 277-279 degC. (Ref. 5046)
1H-NMR (d, CDCl3) 1.28 (s, 6 H), 1.32 (s, 6 H), 1.38 (d, 2 H, J = 4.0 Hz), 1.72 (s, 4 H), 1.87 (d, 2 H, J = 4.0 Hz), 2.12 (s, 3 H), 6.78 (d, 1 H, J = 10 Hz), 7.11 (s, 1 H), 7.26 (s, 1 H), 8.00 (d, 1 H, J = 10 Hz), 9.14 (s, 1 H). (Ref. 5046)








86
PA024
2-[(cyclopropylmethyl)(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)amino]-5-pyrimidinecarboxylic acid
VVA5041
Hiroyuki Kagechika
PA024
C23H29O2N3 379.495 Download ChemDraw structure file
As a potent RXR agonist, PA024 activate RXR homodimer in transactivation assay. And PA024 work as a retinoid synergist in RXR-RAR heterodimer action, thus, PA024 enhance the HL-60 cells differentiation inducing activity of RAR agonist. (Ref. 5047)
mp 232 degC. (Ref. 5047)
1H-NMR (d, DMSO-d6) 8.73 (s, 2 H), 7.36 (d, 1 H, J = 8.4 Hz), 7.22 (d, 1 H, J = 1.2 Hz), 7.02 (dd, 1 H, J = 8.4, 1.2 Hz), 3.84 (d, 2 H, J = 6.8 Hz), 1.67 (s, 4 H), 1.28 (s, 6 H), 1.24 (s, 6 H), 1.18 (br m, 1 H), 0.42 (dd, 2 H, J = 5.1, 13 Hz), 0.14 (dd, 2 H, J = 5.1, 10 Hz). (Ref. 5047)




Ethyl 2-[N-(5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalene-2-yl)amino]pyrimidine-5-carboxylate was alkylated using NaH and cyclopropylmethyl bromide to give ethyl ester of PA024, which was hydrolyzed to afford PA024. (Ref. 5047)



87
TZ335
5-[[4-[methyl(5,6,7,8-tetrahydro-3,5,5,8,8-pentamethyl-2-naphthalenyl)amino]phenyl]methylene]-2,4-thiazolidinedione
VVA5042
Hiroyuki Kagechika
TZ335
C26H30O2N2S 434.595 Download ChemDraw structure file
TZ335 enhanced the potency of RAR agonist in HL-60 cells differntiation assay as an RXR agonist. Because TZ335 has a thiazolidinedione moiety that is unique for PPARg agonist, TZ335 may elicit the PPARg-RXR heterodimer activity by affecting the both part of the heterodimer. (Ref. 5048)









88
LG100754
(2E,4E,6Z)-7-3-n-propyl-5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalen-2-yl)-3-methylocta-2,4,6-trienoic acid
VVA5043
Hiroyuki Kagechika
LG100754
C26H36O3 396.562 Download ChemDraw structure file
Because LG100754 binds to RXR but it cannot activate RXR, it is an RXR antagonist. (Ref. 5049) However, this antagonistic activity is restricted to RXR-homodimer, that is, LG100754 acts as RXR agonist in RXR-RAR heterodimer action. (Ref. 5050)









89
HX600
4-(7,8,9,10-tetrahydro-5,7,7,10,10-pentamethyl-5H-benzo[b]naphtho[2,3-e][1,4]diazepin-12-yl)benzoic acid
VVA5044
Hiroyuki Kagechika
HX600
C29H30O2N2 438.561 Download ChemDraw structure file
HX600 is a potent RXR agonist and work as retinoid synergist in RXR-RAR heterodimer. (Ref. 5051) However, binding affinity of HX600 to RXR is far lower than other RXR agonists. (Ref. 5052)









90
HX630
4-[2,3-(2,5-dimethyl-2,5-hexano)dibenzo[b,f][1,4]thiazepin-11-yl]benzoic acid
VVA5045
Hiroyuki Kagechika
HX630
C29H29O2NS 455.612 Download ChemDraw structure file
HX630 is a potent RXR agonist and work as retinoid synergist in RXR-RAR heterodimer. However, binding affinity of HX630 to RXR is far lower than other RXR agonists. (Ref. 5052)
mp 299 degC. (Ref. 5052)
1H-NMR (d, CDCl3) 8.17 (d, 2 H, J = 8.4 Hz), 7.94 (d, 2 H, J = 8.4 Hz), 7.48 (dd, 1 H, J = 7.7, 1.1 Hz), 7.45 (s, 1 H), 7.37 (m, 2 H), 7.13 (m, 1 H), 7.04 (s, 1 H), 1.64 (m, 4 H), 1.31 (s, 3 H), 1.28 (s, 3 H), 1.15 (s, 3 H), 1.07 (s, 3 H). (Ref. 5052)




Methyl 4-[[2-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)thio]-phenyl]carbamoyl]benzoate was cyclized using phosphoric acid gave methyl ester of HX600, which was hydrolyzed to afford HX600. (Ref. 5052)



91
HX531
4-(5H-2,3-(2,5-dimethyl-2,5-hexano)-5-methyl-8-nitrobenzo[b,e][1,4]diazepin-11-yl)benzoic acid
VVA5046
Hiroyuki Kagechika
HX531
C29H29O4N3 483.558 Download ChemDraw structure file
HX531 works as antagonist for both homodimeric and heterodimeric RXR. In some cases, HX531 not only represses the activity of RXR agonist but also represses the activity of an agonist on the other side of heterodimer. And HX531 also has an RAR antagonistic activity. (Ref. 5053)
mp >300 degC. (Ref. 5053)
1H-NMR (d, CDCl3) 8.15 (m, 3 H), 8.01 (dd, 1 H, J = 8.8, 2.6 Hz), 7.90 (d, 2 H, J = 7.3 Hz), 7.00 (d, 1 H, J = 9.2 Hz), 6.93 (s, 1 H), 6.92 (s, 1 H), 3.31 (s, 3 H), 1.65 (m, 4 H), 1.32 (s, 3 H), 1.27 (s, 3 H), 1.14 (s, 3 H), 1.07 (s, 3 H).




Methyl ester of HX600 (RXR agonist) was nitrated using KNO3 and sulfuric acid, and the product was hydrolyzed under basic condition to give HX531. (Ref. 5053)



92
HX603
4-(5H-2,3-(2,5-dimethyl-2,5-hexano)-5-n-propyldibenzo[b,e][1,4]diazepin-11-yl)benzoic acid
VVA5047
Hiroyuki Kagechika
HX603
C31H34O2N2 466.614 Download ChemDraw structure file
HX603 works as antagonist for both homodimeric and heterodimeric RXR. In some cases, HX603 not only represses the activity of RXR agonist but also represses the activity of an agonist on the other side of heterodimer. And HX603 also has an RAR antagonistic activity. (Ref. 5053)
mp 248.5 degC. (Ref. 5053)
1H-NMR (d, CDCl3) 8.16 (d, 2 H, J = 8.4 Hz), 7.92 (d, 2 H, J = 8.4 Hz), 7.33 (d, 1 H, J = 7.7 Hz), 7.16 (t, 1 H, J = 6.4 Hz), 7.09 (t, 1 H, J = 6.4 Hz), 6.98 (d, 1 H, J = 7.7 Hz), 6.92 (s, 1 H), 6.87 (s, 1 H), 3.69 (m, 1 H), 3.56 (m, 1 H), 1.65 (m, 6 H), 1.32 (s, 3 H), 1.26 (s, 3 H), 1.14 (s, 3 H), 1.05 (s, 3 H), 0.93 (t, 3 H, J = 7.3 Hz). (Ref. 5053)








93
PA452
2-[N-(3-n-hexyloxy-5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalen-2-yl)-N-methylamino]pyrimidine-5-carboxylic acid
VVA5048
Hiroyuki Kagechika
PA452
C26H37O3N3 439.590 Download ChemDraw structure file
PA452 is an RXR specific antagonist, which does not affect the activity of an RAR agonist in RXR-RAR heterodimer action. And PA452 binds to all three subtypes of RXR and repress the activity of RXR agonist in both homodimeric and heterodimeric RXR. (Ref. 5054)
mp 238 degC. (Ref. 5054)
1H-NMR (d, CDCl3) 8.99 (s, 1 H), 8.82 (s, 1 H), 7.12 (s,1 H), 6.85 (s, 1 H), 3.89 (t, 2 H , J = 6.8 Hz), 3.48 (s, 3 H), 1.68 (s, 4 H), 1.57 (quint, 2 H, J = 6.8 Hz), 1.30 (s, 3 H), 1.25 (s, 6 H), 1.25 (m, 4 H), 1.20 (s, 3 H), 0.83 (t, 3 H, J = 6.8 Hz). (Ref. 5054)




Ethyl 2-[N-(3-n-hexyloxy-5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalen-2-yl)-N-methylamino]pyrimidine-5-carboxylate was hydrogenated under basic condition to afford PA452. (Ref. 5054)



94
Tp140
2-hydroxy-5-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)cthynyl]2,4,6-cycloheptatrien-1-one
VVA5049
Hiroyuki Kagechika
Tp140
C23H24O2 332.435 Download ChemDraw structure file
Tp140 is a potent RAR agonist, which causes HL-60 cells differentiation. That activity was strongly increased by an RXR agonist in RXR-RAR heterodimer. (Ref. 5055)









95
Tp80
5,6,7,8-tetrahydro-N-(4-hydroxy-5-oxo-1,3,6-cycloheptatrien-1-yl)-5,5,8,8-tetramethyl-2-naphthalenecarboxyamide.
VVA5050
Hiroyuki Kagechika
Tp80
C22H25O3N 351.439 Download ChemDraw structure file
Tp80 is a potent RAR agonist, which causes HL-60 cells differentiation. That activity was strongly increased by an RXR agonist in RXR-RAR heterodimer. (Ref. 5055)









96
(2E,4E,6E)-7-[3,5-Di-tert-butyl-2-(2,2-difluoro-ethoxy)-phenyl]-octa-2,4,6-trienoic acid
VVA5051
Hiroyuki Kagechika
LG101506
C20H38F2O3 364.511 Download ChemDraw structure file
RXR-selective modulator:hypoglycemic efficacy(db/db mouse model) (Ref. 0057)
165 and 178degC(CH3CN)
1H-NMR(d,CDCl3,400MHz):7.31(d, J=2.4Hz, 1H), 6.95(d, J=2.4Hz, 1H), 6.59 (dd, J=15.3, 11.0Hz, 1H), 6.29(d, J=11.0Hz, 1H), 6.28(d, J=15.3Hz, 1H), 5.96(dt, J=55.3HZ, 4.3Hz, 1H), 5.78(s, 1H), 3.95(m, 2H), 2.22(s, 3H), 2.15(s, 3H), 1.41(s, 9H), 1.30(s, 9H).
HRMS for C25H35F2O3(MH+): calcd, 421.2554; found 421.2696



By hydrolysis of Ethyl (2E,4E,6Z)-7-[3,5-Di-tert-butyl-2-(2,2-difluoroethoxy) -benzene]-3-methylocta-2,4,6-truenoate. (Ref. 0058)



97
(2E,4E)-3-Methyl-5-[2-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-cyclopent-1-enyl]-penta-2,4,-dienoic acid
VVA5052
Hiroyuki Kagechika
ALRT1550
C25H32O 348.521 Download ChemDraw structure file
RXR-selective modulator:hypoglycemic efficacy(db/db mouse model) (Ref. 0057)





By 6steps from (3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-boronic acid and 1,2-Dibromo-cyclopentene.(Ref. 0059)



98
4-(3,5,5,8,8,-Pentamethyl-5,6,7,8-tetrahydro-naphthalen-2-ylsulfanyl)-benzoic acid
VVA5053
Hiroyuki Kagechika
C22H26O2S 354.507 Download ChemDraw structure file
RXR-selective ligand.This compound has activity in nontransfected cells as demonstrateted by their ability to induce TGase activity in Hl-60 cells.(Ref. 0057/0060)
249-250degC(Ref. 0060)
3300-2400(COOH), 1672(C=O) cm-1(Ref. 0060)
1H-NMR(d,CDCl3,300MHz): 1.25(s, 6H), 1.31(s, 6H), 1.69(s, 4H), 2.29(2, 3H),7.05(d, 2H, J=8.5Hz), 7.25(s, 1H), 7.26(s, 1H), 7.92(d, 2H, J=8.5Hz).(Ref. 0060)
13C-NMR(d, CDCl3, 75MHz):20.3, 31.7, 31.8, 34.1, 34.2, 34.9, 35.0, 125.4, 125.5, 126.3, 129.1, 130.6, 134.6, 139.0, 144.2, 146.9, 147.1, 171.0(Ref. 0060)
MS(EI,70eV) m/z 354(M+, 41), 335(67), 173(100).(Ref. 0060)



By hydrolysis of Ethyl 4-[(5,6,7,8-Tetrahydro-3,5,5,8,8-pentamethyl-2-naphthyl) sulfoxy]benzoate.(Ref. 0060)



99
(2E,4E,6E)-6-Fluoro-7-(1-isopropyl-7-methyl-1,2,3,4-tetrahydro-quinolin-6-yl)-3-methyl-octa-2,4,6-trienoic acid
VVA5054
Hiroyuki Kagechika
C20H24FNO2 329.409 Download ChemDraw structure file
RXR-selective modulator.high binding affinity to RXRs.(Ref. 0057/0061)
138-139degC(EtOH)(Ref. 0061)
1H-NMR(d,CDCl3,400MHz): 1.21(d, J=6.8Hz,6H), 1.92(tt, J=6.0, 6.0Hz, 2H), 2.12(d, J=3.6Hz, 3H), 2.21(d, J=0.8Hz, 3H), 2.74(t, J=6.0Hz, 2H), 3.20(t, J=6.0Hz, 2H), 3.70(s, 3H), 4.13(hept, J=6.8Hz, 1H), 5.86(s, 1H), 6.52(d, J=15.6Hz, 1H), 6.66(d, J=8.4Hz, 1H), 6.71(dd, J=15.6, 26.4Hz, 1H), 6.87(d, J=2.0Hz, 1H), 6.95(dd, J=2.4Hz, 8.8Hz, 1H)(Ref. 0061)
HRMS Calcd for C21H26FNO2: 343.1947. Found: 343.1955(Ref. 0061)



By 13steps from 1-(1-methylethyl)-1,2,3,4-tetrahydroquinoline.(Ref. 0060/0061)



100
(6S,7S)-(2E,4E)-5-[2-(5,5,8,8)-Tetramethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-cyclopropyl]-penta-2,4-dienoic acid
VVA5055
Hiroyuki Kagechika
C23H30O2 338.483 Download ChemDraw structure file
hypoglycemic agent(Ref. 0057/0062)
137-138degC(Ref. 0062)
[a]21D:+86.30(c, 0.0015, CH2Cl2)(Ref. 0062)
1H-NMR(d,CDCl3,300MHz):1.14-1.20(m, 2H), 1.20(s, 3H), 1.27(s, 9H), 1.42(s, 3H), 1.66(s, 4H), 1.68-1.80(m, 1H), 1.98(s, 3H), 5.27(dd, J=9.9, 15.4Hz, 1H), 5.64(s, 1H),6.21(d, J=15.4Hz, 1H), 7.03(dd, J=1.9, 8.1Hz, 1H), 7.12(d, J=1.9Hz, 1H), 7.24(d, J=8.1Hz,H)(Ref. 0062)
13C-NMR(d, CDCl3, 300MHz): 13.75, 22.19, 28.67, 29.82, 30.67, 31.80, 31.84, 31.97, 33.99,34.19, 35.18, 115.40, 126.31, 126.48, 127.53, 131.33, 139.63, 141.47, 142.85, 144.57, 155.17, 172.54(Ref. 0062)




By 10steps from 6-Bromo-1,1,4,4-tetramethyl-1,2,3,4-tetrahedronaphthalene.(Ref. 0062)




Reference
[0001]
AUTHOR:Michael B. Sporn, Anita B. Roberts, DeWitt S. Goodman,The Retinoids Biology,Chemistry, and Medicine Second Edition, pp229-256, Raven Press, New York
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0002]
AUTHOR:Tsukita kiyoshi, Yoshizawa Tohru, Matsumoto Hiroyuki(1975) Vitamin to Hokouso Chapter.14 Vitamin pp568-570 Tokyo Kagaku Dojin
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0003]
AUTHOR:Schwieter, U., Englert, G., Rigassi, N., and Vetter, W.
TITLE:Physical organic methods in carotenoid research PubMed ID:5377333
JOURNAL:Pure Appl Chem.
VOL:20 PAGE : 365-420 (1969)

[0004]
AUTHOR:Englert, G.
TITLE:A 13C-NMR. Study of cis-trans isomeric vitamins A, carotenoids and related compounds PubMed ID:1194053
JOURNAL:Helv Chim Acta.
VOL:58 PAGE : 2367-2390 (1975)

[0005]
AUTHOR:Gerster, H.
TITLE:Vitamin A--functions, dietary requirements and safety in humans PubMed ID:9129249
JOURNAL:Int J Vitam Nutr Res.
VOL:67 PAGE : 71-90 (1997)

[0006]
AUTHOR:Barclay, A. J., Foster, A., and Sommer, A.
TITLE:Vitamin A supplements and mortality related to measles: a randomised clinical trial PubMed ID:3101849
JOURNAL:Br Med J (Clin Res Ed).
VOL:294 PAGE : 294-296 (1987)

[0007]
AUTHOR:Karter, D. L., Karter, A. J., Yarrish, R., Patterson, C., Kass, P. H., Nord, J., and Kislak, J. W.
TITLE:Vitamin A deficiency in non-vitamin-supplemented patients with AIDS: a cross-sectional study PubMed ID:7834403
JOURNAL:J Acquir Immune Defic Syndr Hum Retrovirol.
VOL:8 PAGE : 199-203 (1995)

[0008]
AUTHOR:Chytil, F., and Ong, D. E.
TITLE:Cellular retinol- and retinoic acid-binding proteins in vitamin A action PubMed ID:573703
JOURNAL:Fed Proc.
VOL:38 PAGE : 2510-2514 (1979)

[0009]
AUTHOR:Norum KR. Retinoids and acute myeloid leukemia. In: Vitamin A in Health and Disease (Blomhoff, R., ed), pp.485-501, Marcel Dekker Inc., New York.
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0010]
AUTHOR:Bates, C. J.
TITLE:Vitamin A in pregnancy and lactation PubMed ID:6340124
JOURNAL:Proc Nutr Soc.
VOL:42 PAGE : 65-79 (1983)

[0011]
AUTHOR:Maden M. Role of retionids in embryonic development. Vitamin A in Health and Disease (Blomhoff, R., ed.), pp.289-322, Marcel Dekker Inc., New York.
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0012]
AUTHOR:Eiter,Truscheit, U.S.pat. 3,060,229(1962 to Bayer)
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0013]
AUTHOR:Tsukita kiyoshi, Yoshizawa Tohru, Matsumoto Hiroyuki(1975) Vitamin to Hokouso (eds Nihon Seikagakukai) Chapter.14 Vitamin A pp.549 Tokyo Kagaku Dojin
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0014]
AUTHOR:Michael B. Sporn, Anita B. Roberts, DeWitt S. Goodman (1994) The Retinoids Biology,Chemistry, and Medicine Second Edition pp188 Raven Press New York
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0015]
AUTHOR:N. L. Wendler, C. Rosenblum, M. Tishler.
TITLE:The Oxidation of b-carotene .
JOURNAL:
VOL:72 PAGE : 234-234 (1950)

[0016]
AUTHOR:Klein,Kapp. U.S.pat. 1961, 2,972,634 (to Nopco)
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0017]
AUTHOR:T.Mukaiyama, A.Ishida.
TITLE:A New Synthesis of Vitamin A.
JOURNAL:Chem.Lett.
VOL: PAGE : 1201- (1975)

[0018]
AUTHOR:Japan Roche Shiryou
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0019]
AUTHOR:Lakshmanan, M. R., Vaidyanathan, C. S., and Cama, H. R.
TITLE:Oxidation of vitamin A1 aldehyde and vitamin A2 aldehyde to the corresponding acids by aldehyde oxidase from different species PubMed ID:4953590
JOURNAL:Biochem J.
VOL:90 PAGE : 569-573 (1964)

[0020]
AUTHOR:R.Marbet, Ger. pat. 1971, 2,061,507 (to Hoffmann-La Roche)
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0021]
AUTHOR:R.Marbet, U.S. pat. 1973, 3,746,730 (to Hoffmann-La Roche)
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0022]
AUTHOR:
TITLE:
JOURNAL:Terpenoids Steroids.
VOL: PAGE : 5219- (1975)

[0023]
AUTHOR:Tsukita kiyoshi, Yoshizawa Tohru, Matsumoto Hiroyuki(1975) Vitamin to Hokouso Chapter.14 Vitamin pp566 Tokyo Kagaku Dojin
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0024]
AUTHOR:Tsukita Kiyoshi
TITLE:
JOURNAL:Aburakagaku.
VOL:22 PAGE : 575- (1973)

[0025]
AUTHOR:Saari, J. C.(1999) in Retinoids:The Biochemical and Molecular Basis of Vitamin A and Retinod Action. (eds. Nau, H. & Blaner, W.S.) Vol.139, pp.563-588. Springer New York
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0026]
AUTHOR:Crouch, R. K., Chader, G. J., Wiggert, B., and Pepperberg, D. R.
TITLE:Retinoids and the visual process PubMed ID:8863467
JOURNAL:Photochem Photobiol.
VOL:64 PAGE : 613-621 (1996)

[0027]
AUTHOR:Mangelsdorf, D., Umesono, K. & Evans, R. M. (1994) in The Retinoids: Biology, Chemistry and Medicine. (eds. Sporn, M. B., Roberts, A. B. & Goodman, D. S. (2nd Ed.)) pp.319-350. Raven, New York
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0028]
AUTHOR:Hyatt, G. A., and Dowling, J. E.
TITLE:Retinoic acid. A key molecule for eye and photoreceptor development PubMed ID:9224274
JOURNAL:Invest Ophthalmol Vis Sci.
VOL:38 PAGE : 1471-1475 (1997)

[0029]
AUTHOR:Palczewski, K., and Saari, J. C.
TITLE:Activation and inactivation steps in the visual transduction pathway PubMed ID:9287193
JOURNAL:Curr Opin Neurobiol.
VOL:7 PAGE : 500-504 (1997)

[0030]
AUTHOR:Surya, A., and Knox, B. E.
TITLE:Enhancement of opsin activity by all-trans-retinal PubMed ID:9628807
JOURNAL:Exp Eye Res.
VOL:66 PAGE : 599-603 (1998)

[0031]
AUTHOR:Dean, D. M., Nguitragool, W., Miri, A., McCabe, S. L., and Zimmerman, A. L.
TITLE:All-trans-retinal shuts down rod cyclic nucleotide-gated ion channels: a novel role for photoreceptor retinoids in the response to bright light? PubMed ID:12034887
JOURNAL:Proc Natl Acad Sci U S A.
VOL:99 PAGE : 8372-8377 (2002)

[0032]
AUTHOR:G.Wald, R.Hubbard.
TITLE:The mechanism of rhodopsin synthesis.
JOURNAL:Proc. Nat. Acad. sci. USA
VOL:372 PAGE : 69-79 (1951)

[0033]
AUTHOR:Ablonczy, Z., Crouch, R. K., Goletz, P. W., Redmond, T. M., Knapp, D. R., Ma, J. X., and Rohrer, B.
TITLE:11-cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors PubMed ID:12176991
JOURNAL:J Biol Chem.
VOL:277 PAGE : 40491-40498 (2002)

[0034]
AUTHOR:Kuhn, H.,et,al.
TITLE:
JOURNAL:J.Recept. Res.
VOL:7 PAGE : 283-298 (1987)

[0035]
AUTHOR:Ablonczy, Z., Knapp, D. R., Darrow, R., Organisciak, D. T., and Crouch, R. K.
TITLE:Mass spectrometric analysis of rhodopsin from light damaged rats PubMed ID:10874059
JOURNAL:Mol Vis.
VOL:6 PAGE : 109-115 (2000)

[0036]
AUTHOR:Kennedy, M. J., Lee, K. A., Niemi, G. A., Craven, K. B., Garwin, G. G., Saari, J. C., and Hurley, J. B.
TITLE:Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation PubMed ID:11498053
JOURNAL:Neuron.
VOL:31 PAGE : 87-101 (2001)

[0037]
AUTHOR:Dieterle, J. M., and Robeson, C. D.
TITLE:Crystalline neoretinene b PubMed ID:13186815
JOURNAL:Science.
VOL:120 PAGE : 219-220 (1954)

[0038]
AUTHOR:Sherman, S. I., Gopal, J., Haugen, B. R., Chiu, A. C., Whaley, K., Nowlakha, P., and Duvic, M.
TITLE:Central hypothyroidism associated with retinoid X receptor-selective ligands PubMed ID:10194237
JOURNAL:N Engl J Med.
VOL:340 PAGE : 1075-1079 (1999)

[0039]
AUTHOR:Haugen BR, Brown NS, Wood WM, Gordon DF, Ridgway EC.
TITLE:The thyrotrope-restricted isoform of the retinoid-X receptor-
JOURNAL:Mol Endocrinol.
VOL:11 PAGE : 481-489 (1997)

[0040]
AUTHOR:Breen, J. J., Matsuura, T., Ross, A. C., and Gurr, J. A.
TITLE:Regulation of thyroid-stimulating hormone beta-subunit and growth hormone messenger ribonucleic acid levels in the rat: effect of vitamin A status PubMed ID:7835286
JOURNAL:Endocrinology.
VOL:136 PAGE : 543-549 (1995)

[0041]
AUTHOR:Wolf, G.
TITLE:The regulation of the thyroid-stimulating hormone of the anterior pituitary gland by thyroid hormone and by 9-cis-retinoic acid PubMed ID:12462521
JOURNAL:Nutr Rev.
VOL:60 PAGE : 374-377 (2002)

[0042]
AUTHOR:Maung, K., Miyazaki, A., Nomiyama, H., Chang, C. C., Chang, T. Y., and Horiuchi, S.
TITLE:Induction of acyl-coenzyme A:cholesterol acyltransferase-1 by 1,25-dihydroxyvitamin D(3) or 9-cis-retinoic acid in undifferentiated THP-1 cells PubMed ID:11181746
JOURNAL:J Lipid Res.
VOL:42 PAGE : 181-187 (2001)

[0043]
AUTHOR:Guibourdenche, J., Tarrade, A., Laurendeau, I., Rochette-Egly, C., Chambon, P., Vidaud, M., and Evain-Brion, D.
TITLE:Retinoids stimulate leptin synthesis and secretion in human syncytiotrophoblast PubMed ID:10902807
JOURNAL:J Clin Endocrinol Metab.
VOL:85 PAGE : 2550-2555 (2000)

[0044]
AUTHOR:Landthaler, M., Kummermehr, J., Wagner, A., and Plewig, G.
TITLE:Inhibitory effects of 13-cis-retinoic acid on human sebaceous glands PubMed ID:6453562
JOURNAL:Arch Dermatol Res.
VOL:269 PAGE : 297-309 (1980)

[0045]
AUTHOR:Guy, R., Ridden, C., and Kealey, T.
TITLE:The improved organ maintenance of the human sebaceous gland: modeling in vitro the effects of epidermal growth factor, androgens, estrogens, 13-cis retinoic acid, and phenol red PubMed ID:8648176
JOURNAL:J Invest Dermatol.
VOL:106 PAGE : 454-460 (1996)

[0046]
AUTHOR:Seikagaku Hand Book (eds. Nihon Seikagakukai) pp.1274-1277. Tokyo Kagaku Dojin
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0047]
AUTHOR:Matsushima, Y., Kawachi, E., Tanaka, H., Kagechika, H., Hashimoto, Y., and Shudo, K.
TITLE:Differentiation-inducing activity of retinoic acid isomers and their oxidized analogs on human promyelocytic leukemia HL-60 cells PubMed ID:1335240
JOURNAL:Biochem Biophys Res Commun.
VOL:189 PAGE : 1136-1142 (1992)

[0048]
AUTHOR:Tanaka, H., Kagechika, H., Kawachi, E., Fukasawa, H., Hashimoto, Y., and Shudo, K.
TITLE:Base-catalyzed isomerization of retinoic acid. Synthesis and differentiation-inducing activities of 14-alkylated all-trans-, 13-cis-, and 20,14-retro-retinoic acids PubMed ID:1738149
JOURNAL:J Med Chem.
VOL:35 PAGE : 567-572 (1992)

[0049]
AUTHOR:Masayoshi Ito, Kou Hirata(n$'e$e Akutsu), Akiko Kodama, Kiyoshi Tsukida, Hiroyuki Matsumoto, Kazumi Hirouchi, and Toru Yoshizawa.
TITLE:Retro-g-retinals and Visual Pigment Analogues .
JOURNAL:Chem.Pharm.Bull.
VOL:263 PAGE : 925-929 (1978)

[0050]
AUTHOR:Ito, M., Mantani, Y., Tsukida, K., Shichida, Y., Ioshida, S., Fukada, Y., and Yoshizawa, T.
TITLE:A novel rhodopsin analog with bicyclic retinal involving the 8-18 bonded structure in the chromophore PubMed ID:3244052
JOURNAL:J Nutr Sci Vitaminol (Tokyo).
VOL:34 PAGE : 641-646 (1988)

[0051]
AUTHOR:Masayoshi Ito, Tomomi Hiroshima, Kiyoshi Tsukida, Yoshinori Shichida, and Toru Yoshizawa.
TITLE:A Novel Rhodopsin Analogue Possessing the Conformationally 6-s-cis-Fixed Ritinylidene Chromophore.
JOURNAL:J.Chem.Soc. Chem.Commun.
VOL: PAGE : 1443-1444 (1985)

[0052]
AUTHOR:Masayoshi Ito, Akiko Kodama, Tomomi Hiroshima and Kiyoshi Tsukida.
TITLE:Retinoids and Related Compounds. Part 9. Synthesis and Spectral Characterization of Retinal Analogues involving the 11-cis-Locked-syslopentatrienylidene Structure.
JOURNAL:J.Chem.Soc. Perkin Trans.1
VOL: PAGE : 905-907 (1986)

[0053]
AUTHOR:Yuko Katsuta, Miho Sakai, and Masayoshi Ito.
TITLE:Retinoids and Related Compounds. Part 15. Synthesis and Spectral Characterization of Bicyclic Retinals involving the 8-18 or 8-16 Bonded Structure.
JOURNAL:J.Chem.Soc. Perkin Trans.1
VOL: PAGE : 2185-2192 (1993)

[0054]
AUTHOR:M. Ito, Y. Katsura, Y. Imamoto, Y. Shichida, and T. Yoshizawa.
TITLE:
JOURNAL:Photochem. Photobiol.
VOL:56 PAGE : 915- (1992)

[0055]
AUTHOR:Akimori Wada, Miho Sakai, Yasushi Imamoto, Yoshinori Shichida, Masashige Yamauchi, and Masayoshi Ito.
TITLE:Retinoids and Related Compounds. Part 20. Synthesis of (11Z)-8,18-ethanoretinal and comformational study of the rhodopsin chromophore.
JOURNAL:J.Chem.Soc. Perkin Trans.1
VOL: PAGE : 1773-1777 (1997)

[0056]
AUTHOR:Akimori Wada, Masako Tsutsumi, Yuka Inatomi, Hiroo Imai, Yoshinori Shichida, and Masayoshi Ito.
TITLE:Retinoids and related compounds. Part 26. Synthesis of (11Z)-8,18-propano- and methano-retinals and comformational study of the rhodopsin chromophore.
JOURNAL:J.Chem.Soc. Perkin Trans. 1
VOL: PAGE : 2430-2439 (2001)

[0057]
AUTHOR:Michellys, P. Y., Ardecky, R. J., Chen, J. H., D'Arrigo, J., Grese, T. A., Karanewsky, D. S., Leibowitz, M. D., Liu, S., Mais, D. A., Mapes, C. M., et al.
TITLE:Design, synthesis, and structure-activity relationship studies of novel 6,7-locked-[7-(2-alkoxy-3,5-dialkylbenzene)-3-methylocta]-2,4,6-trienoic acids PubMed ID:12954061
JOURNAL:J Med Chem.
VOL:46 PAGE : 4087-4103 (2003)

[0058]
AUTHOR:Michellys, P. Y., Ardecky, R. J., Chen, J. H., Crombie, D. L., Etgen, G. J., Faul, M. M., Faulkner, A. L., Grese, T. A., Heyman, R. A., Karanewsky, D. S., et al.
TITLE:Novel (2E,4E,6Z)-7-(2-alkoxy-3,5-dialkylbenzene)-3-methylocta-2,4,6-trienoic acid retinoid X receptor modulators are active in models of type 2 diabetes PubMed ID:12801232
JOURNAL:J Med Chem.
VOL:46 PAGE : 2683-2696 (2003)

[0059]
AUTHOR:Luc J. Farmer, Susan Jeong, E. Adam Kallel, Stacie S Canan Koch, Glenn E. Croston, Karen S. Flatten, Rich A. Heyman, and Alex M.Nadzan.
TITLE:Synthesis and Structure-Activity Relationships of Potent Retinoid X Receptor Ligands.
JOURNAL:Bioorg.Med.Chem.Lett.
VOL:718 PAGE : 2393-2398 (1997)

[0060]
AUTHOR:Beard, R. L., Colon, D. F., Song, T. K., Davies, P. J., Kochhar, D. M., and Chandraratna, R. A.
TITLE:Synthesis and structure-activity relationships of retinoid X receptor selective diaryl sulfide analogs of retinoic acid PubMed ID:8784454
JOURNAL:J Med Chem.
VOL:39 PAGE : 3556-3563 (1996)

[0061]
AUTHOR:Hibi, S., Kikuchi, K., Yoshimura, H., Nagai, M., Tai, K., and Hida, T.
TITLE:Syntheses and structure-activity relationships of novel retinoid X receptor agonists PubMed ID:9703470
JOURNAL:J Med Chem.
VOL:41 PAGE : 3245-3252 (1998)

[0062]
AUTHOR:Vuligonda, V., Thacher, S. M., and Chandraratna, R. A.
TITLE:Enantioselective syntheses of potent retinoid X receptor ligands: differential biological activities of individual antipodes PubMed ID:11428923
JOURNAL:J Med Chem.
VOL:44 PAGE : 2298-2303 (2001)

[0063]
AUTHOR:Hiroyuki Kagechika
TITLE:Therapeutic applications of synthetic retinoids
JOURNAL:IDrugs
VOL:31 PAGE : 73-83 (2000)

[0064]
AUTHOR:Ellis, C. N., and Voorhees, J. J.
TITLE:Etretinate therapy PubMed ID:3546414
JOURNAL:J Am Acad Dermatol.
VOL:16 PAGE : 267-291 (1987)

[0065]
AUTHOR:Fritsch, P. O.
TITLE:Retinoids in psoriasis and disorders of keratinization PubMed ID:1460124
JOURNAL:J Am Acad Dermatol.
VOL:27 PAGE : S8-14 (1992)

[0066]
AUTHOR:
TITLE:
JOURNAL:Experientia
VOL:34 PAGE : 1105-1109 (1978)

[0067]
AUTHOR:Michael B. Sporn, Anita B. Roberts, DeWitt S. Goodman (1994) The Retinoids Biology,Chemistry, and Medicine Second Edition pp443-520 Raven Press New York
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0068]
AUTHOR:Michael B. Sporn, Anita B. Roberts, DeWitt S. Goodman (1994) The Retinoids Biology,Chemistry, and Medicine Second Edition pp597-630 Raven Press New York
TITLE:
JOURNAL:
VOL: PAGE : - ()

[0069]
AUTHOR:Sporn, M. B., Clamon, G. H., Dunlop, N. M., Newton, D. L., Smith, J. M., and Saffiotti, U.
TITLE:Activity of vitamin A analogues in cell cultures of mouse epidermis and organ cultures of hamster trachea PubMed ID:1110749
JOURNAL:Nature.
VOL:253 PAGE : 47-50 (1975)

[0070]
AUTHOR:Chytil, F., and Ong, D. E.
TITLE:Mediation of retinoic acid-induced growth and anti-tumour activity PubMed ID:944375
JOURNAL:Nature.
VOL:260 PAGE : 49-51 (1976)

[5001]
AUTHOR:Kagechika, H., Kawachi, E., Hashimoto, Y., Himi, T., and Shudo, K.
TITLE:Retinobenzoic acids. 1. Structure-activity relationships of aromatic amides with retinoidal activity PubMed ID:3184125
JOURNAL:J Med Chem.
VOL:31 PAGE : 2182-2192 (1988)

[5002]
AUTHOR:Kagechika, H., Kawachi, E., Hashimoto, Y., and Shudo, K.
TITLE:New type inducers of differentiation of human HL-60 promyelocytic leukemia cells. Terephthalic anilides PubMed ID:6597734
JOURNAL:Chem Pharm Bull (Tokyo).
VOL:32 PAGE : 4209-4212 (1984)

[5003]
AUTHOR:Kagechika, H.
TITLE:Therapeutic applications of synthetic retinoids
JOURNAL:IDrugs
VOL:3 PAGE : 73-83 (2000)

[5004]
AUTHOR:Loeliger, P., Bollag, W., and Mayer, H.
TITLE:Arotinoids, a new class of highly active retinoids
JOURNAL:Eur. J. Med. Chem.
VOL:15 PAGE : 9-15 (1980)

[5005]
AUTHOR:Bollag, W.
TITLE:Arotinoids. A new class of retinoids with activities in oncology and dermatology PubMed ID:6804103
JOURNAL:Cancer Chemother Pharmacol.
VOL:7 PAGE : 27-29 (1981)

[5007]
AUTHOR:Hashimoto, Y., Kagechika, H., Kawachi, E., Fukasawa, H., Saito, G., and Shudo, K.
TITLE:Evaluation of differentiation-inducing activity of retinoids on human leukemia cell lines HL-60 and NB4 PubMed ID:8913505
JOURNAL:Biol Pharm Bull.
VOL:19 PAGE : 1322-1328 (1996)

[5008]
AUTHOR:Kagechika, H., Kawachi, E., Hashimoto, Y., and Shudo, K.
TITLE:Retinobenzoic acids. 2. Structure-activity relationships of chalcone-4-carboxylic acids and flavone-4'-carboxylic acids PubMed ID:2704028
JOURNAL:J Med Chem.
VOL:32 PAGE : 834-840 (1989)

[5009]
AUTHOR:Jetten, A. M., Anderson, K., Deas, M. A., Kagechika, H., Lotan, R., Rearick, J. I., and Shudo, K.
TITLE:New benzoic acid derivatives with retinoid activity: lack of direct correlation between biological activity and binding to cellular retinoic acid binding protein PubMed ID:2884032
JOURNAL:Cancer Res.
VOL:47 PAGE : 3523-3527 (1987)

[5010]
AUTHOR:Teng, M., Duong, T. T., Klein, E. S., Pino, M. E., and Chandraratna, R. A.
TITLE:Identification of a retinoic acid receptor alpha subtype specific agonist PubMed ID:8759622
JOURNAL:J Med Chem.
VOL:39 PAGE : 3035-3038 (1996)

[5011]
AUTHOR:Bernard, B. A., Bernardon, J. M., Delescluse, C., Martin, B., Lenoir, M. C., Maignan, J., Charpentier, B., Pilgrim, W. R., Reichert, U., and Shroot, B.
TITLE:Identification of synthetic retinoids with selectivity for human nuclear retinoic acid receptor gamma PubMed ID:1323296
JOURNAL:Biochem Biophys Res Commun.
VOL:186 PAGE : 977-983 (1992)

[5012]
AUTHOR:Johnson, A. T., Klein, E. S., Wang, L., Pino, M. E., and Chandraratna, R. A.
TITLE:Identification of retinoic acid receptor beta subtype specific agonists PubMed ID:8978832
JOURNAL:J Med Chem.
VOL:39 PAGE : 5027-5030 (1996)

[5013]
AUTHOR:Charpentier, B., Bernardon, J. M., Eustache, J., Millois, C., Martin, B., Michel, S., and Shroot, B.
TITLE:Synthesis, structure-affinity relationships, and biological activities of ligands binding to retinoic acid receptor subtypes PubMed ID:8544175
JOURNAL:J Med Chem.
VOL:38 PAGE : 4993-5006 (1995)

[5014]
AUTHOR:Weiss, J. S., and Shavin, J. S.
TITLE:Adapalene for the treatment of acne vulgaris PubMed ID:9703124
JOURNAL:J Am Acad Dermatol.
VOL:39 PAGE : S50-54 (1998)

[5015]
AUTHOR:Chandraratna, RSA., Henry, E., Attard, J., Gillett, SJ., Song, T., Garst, ME., Nagpal, S., Athanikar, J., Arefieg, T., Gil, DW., et al.
TITLE:Development of RAR subtype selective retinoids for dermatological diseasses.
JOURNAL:Eur. J. Med. Chem.
VOL:30 PAGE : 506-517 (1995)

[5016]
AUTHOR:Esgleyes-Ribot, T., Chandraratna, R. A., Lew-Kaya, D. A., Sefton, J., and Duvic, M.
TITLE:Response of psoriasis to a new topical retinoid, AGN 190168 PubMed ID:7512583
JOURNAL:J Am Acad Dermatol.
VOL:30 PAGE : 581-590 (1994)

[5017]
AUTHOR:Krueger, G. G., Drake, L. A., Elias, P. M., Lowe, N. J., Guzzo, C., Weinstein, G. D., Lew-Kaya, D. A., Lue, J. C., Sefton, J., and Chandraratna, R. A.
TITLE:The safety and efficacy of tazarotene gel, a topical acetylenic retinoid, in the treatment of psoriasis PubMed ID:9449910
JOURNAL:Arch Dermatol.
VOL:134 PAGE : 57-60 (1998)

[5018]
AUTHOR:Klaholz, B. P., Renaud, J. P., Mitschler, A., Zusi, C., Chambon, P., Gronemeyer, H., and Moras, D.
TITLE:Conformational adaptation of agonists to the human nuclear receptor RAR gamma PubMed ID:9501913
JOURNAL:Nat Struct Biol.
VOL:5 PAGE : 199-202 (1998)

[5019]
AUTHOR:Sun, S. Y., Yue, P., Dawson, M. I., Shroot, B., Michel, S., Lamph, W. W., Heyman, R. A., Teng, M., Chandraratna, R. A., Shudo, K., et al.
TITLE:Differential effects of synthetic nuclear retinoid receptor-selective retinoids on the growth of human non-small cell lung carcinoma cells PubMed ID:9354460
JOURNAL:Cancer Res.
VOL:57 PAGE : 4931-4939 (1997)

[5020]
AUTHOR:Kaneko, S., Kagechika, H., Kawachi, E., Hashimoto, Y., Shudo, K.
TITLE:Retinoid antagonists.
JOURNAL:Med. Chem. Res.
VOL:1 PAGE : 220-225 (1991)

[5021]
AUTHOR:Sass, J. O., Hartmann, J., Chahoud, I., Shroot, B., and Nau, H.
TITLE:Transplacental pharmacokinetics of a synthetic retinoid which is not bound by mouse embryonic cellular retinoic acid-binding protein PubMed ID:7863522
JOURNAL:Toxicol Lett.
VOL:75 PAGE : 159-168 (1995)

[5022]
AUTHOR:Johnson, A. T., Klein, E. S., Gillett, S. J., Wang, L., Song, T. K., Pino, M. E., and Chandraratna, R. A.
TITLE:Synthesis and characterization of a highly potent and effective antagonist of retinoic acid receptors PubMed ID:7490725
JOURNAL:J Med Chem.
VOL:38 PAGE : 4764-4767 (1995)

[5023]
AUTHOR:Klein, E. S., Pino, M. E., Johnson, A. T., Davies, P. J., Nagpal, S., Thacher, S. M., Krasinski, G., and Chandraratna, R. A.
TITLE:Identification and functional separation of retinoic acid receptor neutral antagonists and inverse agonists PubMed ID:8798442
JOURNAL:J Biol Chem.
VOL:271 PAGE : 22692-22696 (1996)

[5024]
AUTHOR:Teng, M., Duong, TT., Johnson, AT., Klein, ES., Wang, L., Khalifa, B., and Chandraratna, RAS.
TITLE:Identification of Highly Potent Retinoic Acid Receptor a-Selective Antagonists. PubMed ID:9258350
JOURNAL:J. Med. Chem.
VOL:40 PAGE : 2445-2451 (1997)

[5025]
AUTHOR:Apfel, C., Bauer, F., Crettaz, M., Forni, L., Kamber, M., Kaufmann, F., LeMotte, P., Pirson, W., and Klaus, M.
TITLE:A retinoic acid receptor alpha antagonist selectively counteracts retinoic acid effects PubMed ID:1323127
JOURNAL:Proc Natl Acad Sci U S A.
VOL:89 PAGE : 7129-7133 (1992)

[5026]
AUTHOR:Eyrolles, L., Kagechika, H., Kawachi, E., Fukasawa, H., Iijima, T., Matsushima, Y., Hashimoto, Y., and Shudo, K.
TITLE:Retinobenzoic acids. 6. Retinoid antagonists with a heterocyclic ring PubMed ID:8182710
JOURNAL:J Med Chem.
VOL:37 PAGE : 1508-1517 (1994)

[5027]
AUTHOR:Lee, M. O., Hobbs, P. D., Zhang, X. K., Dawson, M. I., and Pfahl, M.
TITLE:A synthetic retinoid antagonist inhibits the human immunodeficiency virus type 1 promoter PubMed ID:8202539
JOURNAL:Proc Natl Acad Sci U S A.
VOL:91 PAGE : 5632-5636 (1994)

[5028]
AUTHOR:Lee, M. O., Dawson, M. I., Picard, N., Hobbs, P. D., and Pfahl, M.
TITLE:A novel class of retinoid antagonists and their mechanism of action PubMed ID:8662628
JOURNAL:J Biol Chem.
VOL:271 PAGE : 11897-11903 (1996)

[5029]
AUTHOR:Yoshimura, H., Nagai, M., Hibi, S., Kikuchi, K., Abe, S., Hida, T., Higashi, S., Hishinuma, I., and Yamanaka, T.
TITLE:A novel type of retinoic acid receptor antagonist: synthesis and structure-activity relationships of heterocyclic ring-containing benzoic acid derivatives PubMed ID:7636879
JOURNAL:J Med Chem.
VOL:38 PAGE : 3163-3173 (1995)

[5030]
AUTHOR:Umemiya, H., Fukasawa, H., Ebisawa, M., Eyrolles, L., Kawachi, E., Eisenmann, G., Gronemeyer, H., Hashimoto, Y., Shudo, K., and Kagechica, H.
TITLE:Regulation of Retinoidal Actions by Diazepinylbenzoic Acids. Retinoid Synergists Which Activate the RXR-RAR Heterodimers. PubMed ID:9435893
JOURNAL:J. Med. Chem.
VOL:40 PAGE : 4222-4234 (1997)

[5031]
AUTHOR:Li, Y., Hashimoto, Y., Agadir, A., Kagechika, H., and Zhang, X.
TITLE:Identification of a novel class of retinoic acid receptor beta-selective retinoid antagonists and their inhibitory effects on AP-1 activity and retinoic acid-induced apoptosis in human breast cancer cells PubMed ID:10336422
JOURNAL:J Biol Chem.
VOL:274 PAGE : 15360-15366 (1999)

[5032]
AUTHOR:Endo, Y., Iijima, T., Yaguchi, K., Kawachi, E., Inoue, N., Kagechika, H., Kubo, A., and Itai, A.
TITLE:Structure-Activity study of retinoid agonists bearing substituted dicarba-closo-dodecaborane. Relation between retinoidal activity and conformation of two aromatic nuclei PubMed ID:11392543
JOURNAL:Bioorg Med Chem Lett.
VOL:11 PAGE : 1307-1311 (2001)

[5033]
AUTHOR:Endo, Y., Iijima, T., Kagechika, H., Ohta, K., Kawachi, E., and Shudo, K.
TITLE:Dicarba-closo-dodecaboranes as a pharmacophore. Novel potent retinoidal agonists PubMed ID:10319433
JOURNAL:Chem Pharm Bull (Tokyo).
VOL:47 PAGE : 585-587 (1999)

[5034]
AUTHOR:Zusi, F. C., Lorenzi, M. V., and Vivat-Hannah, V.
TITLE:Selective retinoids and rexinoids in cancer therapy and chemoprevention PubMed ID:12547017
JOURNAL:Drug Discov Today.
VOL:7 PAGE : 1165-1174 (2002)

[5035]
AUTHOR:Germain, P., Iyer, J., Zechel, C., and Gronemeyer, H.
TITLE:Co-regulator recruitment and the mechanism of retinoic acid receptor synergy PubMed ID:11805839
JOURNAL:Nature.
VOL:415 PAGE : 187-192 (2002)

[5036]
AUTHOR:Bourguet, W., Vivat, V., Wurtz, J. M., Chambon, P., Gronemeyer, H., and Moras, D.
TITLE:Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains PubMed ID:10882070
JOURNAL:Mol Cell.
VOL:5 PAGE : 289-298 (2000)

[5037]
AUTHOR:Dawson, M. I., Hobbs, P. D., Derdzinski, K. A., Chao, W. R., Frenking, G., Loew, G. H., Jetten, A. M., Napoli, J. L., Williams, J. B., Sani, B. P., et al.
TITLE:Effect of structural modifications in the C7-C11 region of the retinoid skeleton on biological activity in a series of aromatic retinoids PubMed ID:2738885
JOURNAL:J Med Chem.
VOL:32 PAGE : 1504-1517 (1989)

[5038]
AUTHOR:Graupner, G., Malle, G., Maignan, J., Lang, G., Prunieras, M., and Pfahl, M.
TITLE:6'-substituted naphthalene-2-carboxylic acid analogs, a new class of retinoic acid receptor subtype-specific ligands PubMed ID:1656958
JOURNAL:Biochem Biophys Res Commun.
VOL:179 PAGE : 1554-1561 (1991)

[5039]
AUTHOR:Yu, K. L., Spinazze, P., Ostrowski, J., Currier, S. J., Pack, E. J., Hammer, L., Roalsvig, T., Honeyman, J. A., Tortolani, D. R., Reczek, P. R., et al.
TITLE:Retinoic acid receptor beta,gamma-selective ligands: synthesis and biological activity of 6-substituted 2-naphthoic acid retinoids PubMed ID:8691435
JOURNAL:J Med Chem.
VOL:39 PAGE : 2411-2421 (1996)

[5040]
AUTHOR:Fanjul, A., Dawson, M. I., Hobbs, P. D., Jong, L., Cameron, J. F., Harlev, E., Graupner, G., Lu, X. P., and Pfahl, M.
TITLE:A new class of retinoids with selective inhibition of AP-1 inhibits proliferation PubMed ID:7969403
JOURNAL:Nature.
VOL:372 PAGE : 107-111 (1994)

[5041]
AUTHOR:Wu, J. M., DiPietrantonio, A. M., and Hsieh, T. C.
TITLE:Mechanism of fenretinide (4-HPR)-induced cell death PubMed ID:11483862
JOURNAL:Apoptosis.
VOL:6 PAGE : 377-388 (2001)

[5042]
AUTHOR:Fanjul, A. N., Piedrafita, F. J., Al-Shamma, H., and Pfahl, M.
TITLE:Apoptosis induction and potent antiestrogen receptor-negative breast cancer activity in vivo by a retinoid antagonist PubMed ID:9788611
JOURNAL:Cancer Res.
VOL:58 PAGE : 4607-4610 (1998)

[5043]
AUTHOR:Teng, M., Duong, TT., Johnson, AT., Klein, ES., Wang, L., Khalifa, B., Chandraratna, RSA.
TITLE:Identification of Highly Potent Retinoic Acid Receptor a-Selective Antagonists. PubMed ID:9258350
JOURNAL:J. Med. Chem.
VOL:40 PAGE : 2445-2451 (1997)

[5044]
AUTHOR:Lehmann, J. M., Jong, L., Fanjul, A., Cameron, J. F., Lu, X. P., Haefner, P., Dawson, M. I., and Pfahl, M.
TITLE:Retinoids selective for retinoid X receptor response pathways PubMed ID:1335166
JOURNAL:Science.
VOL:258 PAGE : 1944-1946 (1992)

[5045]
AUTHOR:Boehm, M. F., Zhang, L., Badea, B. A., White, S. K., Mais, D. E., Berger, E., Suto, C. M., Goldman, M. E., and Heyman, R. A.
TITLE:Synthesis and structure-activity relationships of novel retinoid X receptor-selective retinoids PubMed ID:8071941
JOURNAL:J Med Chem.
VOL:37 PAGE : 2930-2941 (1994)

[5046]
AUTHOR:Boehm, M. F., Zhang, L., Zhi, L., McClurg, M. R., Berger, E., Wagoner, M., Mais, D. E., Suto, C. M., Davies, J. A., Heyman, R. A., et al.
TITLE:Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells PubMed ID:7636877
JOURNAL:J Med Chem.
VOL:38 PAGE : 3146-3155 (1995)

[5047]
AUTHOR:Ohta, K., Kawachi, E., Inoue, N., Fukasawa, H., Hashimoto, Y., Itai, A., and Kagechika, H.
TITLE:Retinoidal pyrimidinecarboxylic acids. Unexpected diaza-substituent effects in retinobenzoic acids PubMed ID:11045459
JOURNAL:Chem Pharm Bull (Tokyo).
VOL:48 PAGE : 1504-1513 (2000)

[5048]
AUTHOR:Ebisawa, M., Kawachi, E., Fukasawa, H., Hashimoto, Y., Itai, A., Shudo, K., and Kagechika, H.
TITLE:Novel thiazolidinedione derivatives with retinoid synergistic activity PubMed ID:9635519
JOURNAL:Biol Pharm Bull.
VOL:21 PAGE : 547-549 (1998)

[5049]
AUTHOR:Canan Koch, S. S., Dardashti, L. J., Hebert, J. J., White, S. K., Croston, G. E., Flatten, K. S., Heyman, R. A., and Nadzan, A. M.
TITLE:Identification of the first retinoid X, receptor homodimer antagonist PubMed ID:8765503
JOURNAL:J Med Chem.
VOL:39 PAGE : 3229-3234 (1996)

[5050]
AUTHOR:Lala, D. S., Mukherjee, R., Schulman, I. G., Koch, S. S., Dardashti, L. J., Nadzan, A. M., Croston, G. E., Evans, R. M., and Heyman, R. A.
TITLE:Activation of specific RXR heterodimers by an antagonist of RXR homodimers PubMed ID:8837780
JOURNAL:Nature.
VOL:383 PAGE : 450-453 (1996)

[5051]
AUTHOR:Umemiya, H., Kawachi, E., Kagechika, H., Fukasawa, H., Hashimoto, Y., and Shudo, K.
TITLE:Synergists for retinoid in cellular differentiation of human promyelocytic leukemia cells HL-60 PubMed ID:8536354
JOURNAL:Chem Pharm Bull (Tokyo).
VOL:43 PAGE : 1827-1829 (1995)

[5052]
AUTHOR:Umemiya, H., Fukasawa, H., Ebisawa, M., Eyrolles, L., Kawachi, E., Eisenmann, G., Gronemeyer, H., Hashimoto, Y., Shudo, K., Kagechika, H.
TITLE:Regulation of Retinoidal Actions by Diazepinylbenzoic Acids. Retinoid Synergists Which Activate the RXR-RAR Heterodimers. PubMed ID:9435893
JOURNAL:J. Med. Chem.
VOL:40 PAGE : 4222-4234 (1997)

[5053]
AUTHOR:Ebisawa, M., Umemiya, H., Ohta, K., Fukasawa, H., Kawachi, E., Christoffel, G., Gronemeyer, H., Tsuji, M., Hashimoto, Y., Shudo, K., et al.
TITLE:Retinoid X receptor-antagonistic diazepinylbenzoic acids PubMed ID:10748721
JOURNAL:Chem Pharm Bull (Tokyo).
VOL:47 PAGE : 1778-1786 (1999)

[5054]
AUTHOR:Takahashi, B., Ohta, K., Kawachi, E., Fukasawa, H., Hashimoto, Y., and Kagechika, H.
TITLE:Novel retinoid X receptor antagonists: specific inhibition of retinoid synergism in RXR-RAR heterodimer actions PubMed ID:12139443
JOURNAL:J Med Chem.
VOL:45 PAGE : 3327-3330 (2002)

[5055]
AUTHOR:Ebisawa, M., Ohta, K., Kawachi, E., Fukasawa, H., Hashimoto, Y., and Kagechika, H.
TITLE:Novel retinoidal tropolone derivatives. Bioisosteric relationship of tropolone ring with benzoic acid moiety in retinoid structure PubMed ID:11310685
JOURNAL:Chem Pharm Bull (Tokyo).
VOL:49 PAGE : 501-503 (2001)