Category:LBS/Biosynthesis
Ceramide Metabolism
Ceramide synthesis
Dihydroceramide (DHCer) is formed by acylation of sphinganine (d18:0) by ceramide synthases. Each DHCer of different length is then desaturated by respective desaturase to ceramide (Cer). DHCer and Cer have many possible fates such as (DH)Cer phosphate, (DH)sphingomyelin, glycosyl (DH)Cer, or hydrolysis to the free sphingoid base. Synthesis of Cer proceeds at the lumen of the endoplasmic reticulum (ER), but the later processing may occur at different locations. |
スフィガニン (d18:0) がセラミド合成酵素でアシル化され、ジヒドロセラミド (DHCer) ができます。各 DHCer は不飽和化酵素によりセラミド (Cer) になります。DHCer と Cer は、リン酸化(DH)Cer、(DH)スフィンゴミエリン、グリコシル(DH)Cerまたは遊離スフィンゴイド塩基への加水分解など、多岐に変化します。セラミド合成までは小胞体膜上でおこなわれ、その後のプロセスは各所に別れます。 |
Category:LBS/Biosynthesis/Ceramide
Ceramide degradation
Ceramides are degraded by reversible hydrolysis between the long chain base (LCB) and fatty acyl (FA). Much work has been done in mammals and yeast, and ceramidases are classified by their pH optima as acidic, neutral, or alkaline ceramidase. In mammals, sphingosine (d18:1Δ4E) is produced only by the hydrolysis (no de novo synthesis), therefore the cell signalling by d18:1Δ4E-1P (S1P) is modulated by the degradation. Most sphingosine come from sphingomyelin. |
セラミドは可逆的な加水分解により長鎖塩基 (LCB) と脂肪酸 (FA) に分かれます。研究の多くは動物や酵母を用いておこなわれ、セラミド分解酵素は活性の高いpHによって、酸性、中性、アルカリセラミダーゼに分けられます。動物では スフィンゴシン (d18:1Δ4E) が分解経路のみによって生じるため(直接合成されない)、d18:1Δ4E-1P (S1P) による細胞シグナリングがセラミド分解に依存します。多くのスフィンゴシンはスフィンゴミエリン由来です。 |
ceramide | |||||
S1P lyase | S1P phosphatase | fatty acid | |||
PE CDP-ethanolamine | hexadecenal + phosphoethanolamine |
sphingosine 1-phosphate | sphingosine | ||
palmytate hexadecanal |
the human plasma lipidome
Glycosphingolipid in Plant
Higher plants contain glucosylceramide (GlcCer), its derivatives, and glycosyl phosphoinositolceramides (GIPC). Sphingolipid comprises more than 40% of the total lipid of the cytoplasmic membrane and is also major in tonoplast. GlcCer and GIPC form membrane rafts and micro-domains. The major component of rafts in animal cells is sphingomyelin (SM). Plant does not synthesize SM, however, and GIPC is considered to replace it. GlcCer and GIPC show different compositions of their long chain bases and fatty acids. Different ceramides are probably selected at the time of glycosyltransfer. Many responsible genes for sphingolipid biosynthesis are identified in the last decade. |
高等植物にはグルコシルセラミド(GlcCer)由来の系列とグリコシルイノシトールホスホセラミド(GIPC)が存在します。スフィンゴ脂質は植物細胞膜の脂質の40%以上を占め、液胞膜にも多く存在します。GlcCerやGIPCは細胞膜のラフトやマイクロドメインに多く存在します。 動物細胞のラフトにはスフィンゴミエリン(SM)が多いですが、植物はSMを含まず、GIPCがSMを代替すると考えられます。GlcCerとGIPCのセラミド部分を構成する長鎖塩基や脂肪酸は組成が異なり、糖が結合する際に異なるセラミドが選択されると考えられています。スフィンゴ脂質の生合成に関わる酵素遺伝子の多くはこの10年間に同定されました。 |
Glycosphingolipid biosynthetic pathway
palmitoyl (16:0)-CoA + serine |
SPT |
3-keto sphinganine | KSR |
sphinganine d18:0 |
LCB C-4 OHase |
phytosphinganine t18:0 |
||||||||||||||||||||||||||||
|
Lumen of endoplasmic reticulum (ER) |
|
||||||||||||||||||||||||||||||||
|
d18:0-LCFA | t18:0-VLCFA | ||||||||||||||||||||||||||||||||
|
|
Bold font = ceramides | ||||||||||||||||||||||||||||||||
d18:1Δ8E/Z-hLCFA | t18:1Δ8E/Z-hVLCFA | |||||||||||||||||||||||||||||||||
+UDP-Glc | +UDP-Glc | transport | ||||||||||||||||||||||||||||||||
Glc-ceramide Glc-d18:2 4E,8E/Z-hLCFA Glc-d18:1 8E/Z-hLCFA Glc-t18:1-hVLCFA |
Golgi | t18:1Δ8E/Z-hVLCFA | ||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||
GIPC |
- ↑ CS can utilize a range of FA-CoAs (C16-24) but not hydroxy-FA-CoAs. See Sperling P, Heinz E. “Plant sphingolipids: structural diversity, biosynthesis, first genes and functions” Biochim Biophys Acta. 2003 10;1632:1-15. PMID 12782146
- ↑ Activity of IPCS is high in Fabaceae. See Bromley PE, Li YO, Murphy SM, Sumner CM, Lynch DV. “Complex sphingolipid synthesis in plants: characterization of inositolphosphorylceramide synthase activity in bean microsomes” Arch Biochem Biophys. 2003 15;417:219-26. PMID 12941304
Glycosphingolipid in Fungi
Fungi synthesize derivative series of GlcCer and GalCer, and GIPC. GIPC includes inositol phosphoceramide (IPC), mannosyl-inositol phosphoceramide (MIPC), and mannosyl-diinositol phosphoceramide (M(IP)2C). As in higher plants, fungi do not synthesize sphingomyelin. The lipid membrane rafts contain ergosterols and glycosphingolipids. Long chain bases of GlcCer are often methylated at their C-9 position. Long chain bases of GIPC are phytosphingosines. GIPC also occur as membrane anchors (GPI anchors) of proteins in yeast[1], mammalian cells[2], and plants [3]. |
菌類には、グルコシルセラミド(GlcCer)とガラクトシルセラミド(GalCer)の派生物に加え、グリコシルイノシトールホスホセラミド(GIPC)もあります。GIPCにはイノシトールホスホセラミド(IPC)にマンノースが結合したマンノシルイノシトールホスホセラミド(MIPC)、マンノシルジイノシトールホスホセラミド[M(IP)2C)]が含まれます。植物と同様、菌類もスフィンゴミエリンは持ちません。細胞膜のラフトにはエルゴステロールとスフィンゴ糖脂質が多く含まれます。GlcCer系列のセラミドは、長鎖塩基のC-9位がメチル化されます。GIPCの長鎖塩基はフィトスフィンゴシンです。GIPCは酵母においてタンパク質の膜アンカー (GPIアンカー) としても存在します。 |
Yeast (S. cerevisiae) is an exceptional fungus in that it scarcely contains cerebroside and phytosphinganine (t18:0) is predominant. It contains, however, GIPC and GPI-anchor proteins. |
パン酵母は菌類の中でも例外的です。セレブロシドを少量含み、フィトスフィンガニンが主要なLCBです。ただしGIPCやGPIアンカータンパク質は持っています。 |
This category currently contains no pages or media.